Free theories of definite descriptions based on *FDE*

Henrique Antunes Federal University of Bahia

henrique.antunes@ufba.br

ExtenDD January 24, 2024

< 回 ト < 三 ト <

Introduction

- The majority of free logics are based on classical sentential logic, and so are the majority of free theories of DDs.
- A very natural principle governing DDs, viz., the **characterization principle** (CP), gives rise to paradoxes whose structure resembles that of well-known paradoxes, such as Russell's and Curry's paradoxes.
- Is it possible to come up with a non-trivial free theory of DDs that retains CP? In particular, would a free theory of DDs that is based on **first-degree entailment** (*FDE*) be capable of handling the aforementioned paradoxes?
 - FDE is a paraconsistent logic.
 - + FDE lacks an implication connective w.r.t. which modus ponens is valid.
- The answer is "No". Such a theory is either trivial or must be subject to severe restrictions that end up rendering it completely useless.
- One can still come up with non-trivial theories of DDs that are based on *FDE*.

< ロ > < 同 > < 三 > < 三 >

Introduction

In a series of recent papers Abilio Rodrigues and I have investigated different first-order versions of *FDE* and a few related logics:

- H. Antunes, A. Rodrigues, W. Carnielli, and M.E. Coniglio. Valuation semantics for first-order logics of evidence and truth. *Journal of Philosophical Logic* 51:1141–73, 2022.
 - Constant domain versions of FDE, K3, LP, and LET_F
- A. Rodrigues and H. Antunes. First-order logics of evidence and truth with constant and variable domains. *Logica Universalis* 16:419-49, 2022.
 - · Constant and variable domain versions of LET_F and LET_J
- H. Antunes and A. Rodrigues. Variable domain first-order first-degree entailment and some of its children. *Studia Logica. Forthcoming.*
 - · Variable domain versions of FDE, K3, LP, N3, N4, and NP
- H. Antunes and A. Rodrigues. On universally free Belnap-Dunn's four-valued logic and Nelson's N4: Technical Results. *Forthcoming*.
 - Variable domain free versions of FDE and N4

イロト イロト イヨト イヨト

Outline

- 1. Free theories of definite descriptions
- 2. Definite description paradoxes I
- 3. The logic *FFDE* (in collaboration with Abilio Rodrigues)
- 4. Definite description paradoxes II
- 5. Free theories of definite descriptions based on FDE (ongoing work)

< □ > < □ > < □ > < □ >

01/24/2024

- Free logics allow for **empty singular terms**, i.e., terms that are not assigned an element of the quantificational domain.
 - t is not assigned any object at all
 - t is assigned an object outside the domain of the quantifiers (dual domain)
- In a free logic the usual $\forall E$ and $\exists I$ rules are no longer valid and must be replaced by weaker versions thereof:

 $\forall x \alpha \neq \alpha(t/x) \qquad \forall x \alpha, \mathbf{E}t \models \alpha(t/x)$

 $\alpha(t/x) \not\models \exists x \alpha \qquad \qquad \alpha(t/x), \textbf{\textit{E}} t \vDash \exists x \alpha$

- If the logic is **inclusive**, its ∀*I* and ∃*E* rules must also be modified in a similar way.
- Even though free logics are non-classical, the majority of them is **sententially classical**, in the sense that they preserve all valid inferences of sentencial classical logic.

イロト 不同ト イヨト イヨト

(single domain)

Definite description operator

 $ix \alpha \Rightarrow$ the individual that satisfies $\alpha \Rightarrow \underline{the \ \alpha}$

(x is the only variable free in α)

- γ is a variable binding term operator.
- α is the **basis** of $\imath x \alpha$ and the **scope** of x.
- $i x \alpha$ is **proper** iff there exists one and only one individual in the domain of the quantifiers that satisfies α ; $i x \alpha$ is **improper** otherwise.
- In a free theory...
 - $i x \alpha$ is a genuine singular term
 - Improper DDs are treated as empty terms

(*≠* Russellian treatment)

< ロト < 同ト < ヨト < ヨト

200

6/48

All free theories of DDs (that I am aware of) agree on Lambert's law:

Lambert's law

(LL)
$$\forall y [y = \imath x \alpha \leftrightarrow \forall x (\alpha \leftrightarrow x = y)]$$

(Lambert [15])

• Example:

$$\forall y [y = \imath x Fx \leftrightarrow \forall x (Fx \leftrightarrow x = y)]$$

- LL expresses that an object *d* in the domain of the quantifiers is (equal to) <u>the α</u> iff *d* is the only object in the domain of the quantifiers that satisfies α.
- LL says nothing about the behavior of improper DDs.

lenrig		

7/48

イロト イロト イヨト イヨト

A few consequences of LL in **positive free logic**:

•
$$E_{1x\alpha} \rightarrow 1x\alpha = 1x\alpha$$

• $E_{1x\alpha} \rightarrow \forall x(\alpha \rightarrow x = 1x\alpha)$
• $E_{1x\alpha} \rightarrow \alpha(1x\alpha/x)$ (restricted characterization principle)
• $E_{1x\alpha} \rightarrow \exists x\alpha$
• $E_{1x\alpha} \rightarrow \forall x \forall y[(\alpha \land \alpha(y/x)) \rightarrow x = y]$
• $\{\exists x\alpha \land \forall x \forall y[(\alpha \land \alpha(y/x)) \rightarrow x = y]\} \rightarrow E_{1x\alpha}$
• $E_{1x\alpha} \leftrightarrow \exists y \forall x(\alpha \leftrightarrow x = y)$ (Russell's equivalence I)
• $\exists y[\forall x(\alpha \leftrightarrow x = y) \land \beta] \rightarrow \beta(1x\alpha/y)$
• $E_{1x\alpha} \rightarrow \{\beta(1x\alpha/y) \leftrightarrow \exists y[\forall x(\alpha \leftrightarrow x = y) \land \beta]\}$ (Russell's equivalence II)
• $E_{1x\alpha} \rightarrow [\beta(1x\alpha/x) \leftrightarrow \forall x(\alpha \rightarrow \beta)]$
• $(E_{1x\alpha} \lor E_{1x\beta}) \rightarrow [\forall x(\alpha \leftrightarrow \beta) \rightarrow 1x\alpha = 1x\beta]$
• $\forall y(1x(x = y) = y)$ (restricted cancellation principle)
• $\neg E_{1x}(x \neq x)$

 $(\alpha(t/x) \text{ is the result of replacing all free occurrences of } x, in \alpha, by t) \in \mathbb{R}$

- Minimal free theory of DDs (mFD): positive free logic + LL
- Maximal free theory of DDs (MFD/FD2): mFD +

Identity of nonexistents

(FD2)
$$(\neg \boldsymbol{E} t_1 \land \neg \boldsymbol{E} t_2) \rightarrow t_1 = t_2$$

(Scott [29]; Leblanc & Thomason [19])

• Free Russellian theory of DDs (RFD): negative free logic + LL +

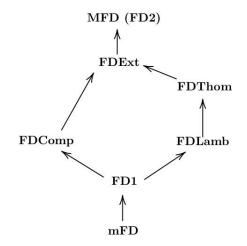
$$[x:\alpha]t \leftrightarrow (\boldsymbol{E}t \wedge \alpha(t/x))$$

(Scales [28]; Lambert [16])

<ロト < 回 ト < 三 ト < 三 ト -

 $[\ :\]$ is a variable binding predicate operator that allows expressing scope distinctions in RFD.

van Fraassen's spectrum of free theories of DDs (Lambert [17]) • $\eta x(x=t) = t$ (FD1) • $\alpha(\eta x \alpha / x)$ holds when α is the formula x = t. • $\neg \mathbf{E} \imath x \alpha \rightarrow \imath x \alpha = \imath x (x \neq x)$ (FDScott) • Every improper DD is identical to $\eta x(x \neq x)$. • $(\alpha(t/x) \land \neg \exists x \alpha) \rightarrow \alpha(\imath x \alpha/x)$ (FDLamb) • For $\alpha(\imath x \alpha/x)$ to hold it suffices that α holds of at least one nonexistent and that it holds of no existent whatsoever. • $(\alpha(t/x) \land \neg Et) \rightarrow \alpha(\imath x \alpha/x)$ (FDThom) • For $\alpha(\imath x \alpha/x)$ to hold it suffices that α holds of at least one nonexistent, irrespective of whether some existent also satisfies α . • $\forall x(\alpha \leftrightarrow \beta) \rightarrow \eta x \alpha = \eta x \beta$ (FDExt) • If α and β are co-extensional, then $\eta x \alpha$ is identical with $\eta x \beta$. • $\Pi x(\alpha \leftrightarrow \beta) \rightarrow \eta x \alpha = \eta x \beta$ (FDComp) • If α and β are co-comprehensive, then $\eta x \alpha$ is identical with $\eta x \beta$. イロト イヨト イヨト Э Henrique Antunes Free theories of DDs based on FDE 01/24/2024 10 / 48



	Antunes

< D > < P > <</p> Э 01/24/2024

Characterization principle

(CP)

• Since $\mathbf{E} \imath x \alpha \rightarrow \alpha(\imath x \alpha/x)$ is a theorem of mFD, CP holds for every proper DD. However, mFD does not lay down any conditions under which CP is supposed to hold when $\imath x \alpha$ is improper.

 $\alpha(\eta x \alpha / x)$

• Some theories in the spectrum explicitly extend mFD in this regard, e.g.:

$$\bullet \ (\alpha(t/x) \land \neg \exists x\alpha) \to \alpha(ix\alpha/x) \tag{FDLamb}$$

•
$$(\alpha(t/x) \land \neg Et) \rightarrow \alpha(\imath x \alpha/x)$$
 (FDThom)

• As Lambert [15] has shown, there is a very good reason why CP cannot be taken to hold in its full generality: it is inconsistent!

イロト イロト イヨト イヨト

• **Paradox I:** Let α be the formula $Fx \land \neg Fx$. It follows from CP that:

 $F_{ix}(F_{x} \wedge \neg F_{x}) \wedge \neg F_{ix}(F_{x} \wedge \neg F_{x})$

• Paradox II ("Curry's Paradox"): Consider the following formula:

$$\mathbf{x} = \mathbf{x} \to \beta$$

It follows from CP that:

$$ix(x = x \rightarrow \beta) = ix(x = x \rightarrow \bot) \rightarrow \beta$$

If t = t is a valid schema of the underlying logic, one can infer β by *modus* ponens, for any β .

• In some free logics t = t is not a valid schema. This does not prevent the derivation of the above paradox, though, for it suffices to replace x = x by any tautological formula α in which x is free.

Henrique Antunes

• CP cannot be assumed to hold in an **explosive logic**, i.e., a logic in which the following schema is valid:

Principle of Explosion

EXP)
$$\alpha, \neg \alpha \models \beta$$

For otherwise the conclusion of Paradox I would lead to triviality.

- Paradox II shows that even if the underlying logic is non-explosive (i.e., is paraconsistent), CP leads to triviality provided that the logic has an implication connective → w.r.t. which modus ponens is valid.
- What if the underlying logic (i) is paraconsistent and (ii) lacks an implication connective w.r.t. which *modus ponens* is valid?
 - Free version of FDE
 - Free version of LP

- In [3] Abilio Rodrigues and I propose universally free versions with variable domains of the logics *FDE* and *N*4, called respectively *FFDE* and *FN*4.
- *FDE* was investigated in a series of papers by Belnap and Dunn in the 1970s [6, 7, 14], while *N*4 is the sentential fragment of the logic *N*⁻, proposed by Almukdad and Nelson in [1]. *N*4 is a paraconsistent version of Nelson's logic *N*3 [21].
- Both systems, *FFDE* and *FN*4, are interpreted as **information-based logics** in [3], i.e., logics that are supposed to be used for processing information in the sense of allowing one (viz., a person or a computer) to draw sensible conclusions from the information stored in a given database.
- This interpretation is in line with the intepretation of *FDE* advanced by Belnap in [6].

FFDE and *FN*4 are better suited to represent information states that:

- May be either contradictory or incomplete;
 - FFDE and FN4 are both paraconsistent and paracomplete.
- Evolve over time, in the sense that they can be supplemented with new pieces of information as time goes by;
 - Both systems are endowed with Kripke semantics that resemble that of intuitionistic logic.

• Are such that the new information may concern previously unacknowledged individuals.

- The stages of a model have variable, but ≤-cumulative, domains;
- The domain of a stage may be empty;
- Individual constants may be empty;

Both *FFDE* and *FN*4 are **negative** logics in the sense that every atomic formula $Pc_1 \ldots c_n$ (and negation therefore) in which an empty term occurs receives a non-designated value, which is supposed to represent the lack of information about $Pc_1 \ldots c_n$.

16/48

01/24/2024

- Given a stage w of a model M, which is supposed to represent a stage of the development of a certain database, a formula α and its negation ¬α may receive either the value 1 or the value 0 at w. The values of α and ¬α are independent of each other.
- The value 1 represents the presence of information, either positive or negative, while the value 0 represents the lack thereof.
- There are four possibilities:
 - $v(\alpha, w) = 1$ and $v(\neg \alpha, w) = 0$
 - **★** w contains the information that α is true, but it doesn't contain the information that α is false.
 - $v(\alpha, w) = 0$ and $v(\neg \alpha, w) = 1$
 - **★** w contains the information that α is false, but it doesn't contain the information that α is true.
 - $v(\alpha, w) = 0$ and $v(\neg \alpha, w) = 0$
 - **★** w contains no information whatsoever concerning α . (lac

(lack of information)

- $v(\alpha, w) = 1$ and $v(\neg \alpha, w) = 1$
 - ***** w contains the information that α is true and it also contains the information that it is false. (contradictory information)

01/24/2024

Э

イロト イボト イヨト イヨト

17 / 48

- The values of an atomic sentence $Pc_1 \dots c_n$ and its negation $\neg Pc_1 \dots c_n$ at w are determined by P's extension P^w_+ and its anti-extension P^w_- at w.
 - P_+^w is the set of *n*-tuples of individuals (in d(w)) that satisfy P at w;
 - P_{-}^{w} is the set of *n*-tuples of individuals (in d(w)) that do not satisfy P at w;
- P^w_+ and P^w_- are required to be either or exhaustive w.r.t. the domain of w, ie:
 - $P_{+}^{w} \cap P_{-}^{w}$ may be nonempty;
 - $P^w_+ \cup P^w_-$ may be a proper subset of the domain of w.
- The domains of stages and the extensions and anti-extensions of predicates are preserved across \leq -related stages:
 - If $w \le w'$, then $d(w) \subseteq d(w')$;
 - If w < w', then $P_{+}^{w} \subseteq P_{+}^{w'}$ and $P^{w} \subseteq P_{+}^{w'}$.
- The values of the remaining sentences are determined by the values of their subformulas and negations thereof. For example:
 - $v(\alpha \land \beta, w) = 1$ iff $v(\alpha, w) = 1$ and $v(\beta, w) = 1$;
 - $v(\neg(\alpha \lor \beta), w) = 1$ iff $v(\neg \alpha, w) = 1$ and $v(\neg \beta, w) = 1$.

Sac

イロト イヨト イヨト

- The interpretation function \mathcal{I} of a model \mathcal{M} may be either defined or undefined at c and w. In the former case, $\mathcal{I}(c, w)$ is an element of d(w).
- If c is empty at w, i.e., if $\mathcal{I}(c, w)$ is undefined, then every atomic formula and negation thereof in which c occurs receives the value 0 at w. This is supposed to represent the idea that there can be no information, either positive or negative, involving empty names.
- Individual constants are **rigid designators**, they are interpreted as the same individual across ≤-related stages:
 - If $w \le w'$ and $\mathcal{I}(c, w)$ is defined, then $\mathcal{I}(c, w') = \mathcal{I}(c, w)$.
- The language of *FFDE* includes a **definedness predicate** *E* that expresses whether $\mathcal{I}(c, w)$ is defined:
 - $v(\mathbf{E}c, w) = 1$ iff $\mathcal{I}(c, w)$ is defined;
 - $v(\neg Ec, w) = 1$ iff $\mathcal{I}(c, w)$ is undefined;
- Hence, *E* behaves classically in *FFDE*, that is, the following two possibilites are ruled out:
 - v(Ec, w) = 0 and v(Ec, w) = 0;
 - $v(\mathbf{E}c, w) = 1$ and $v(\mathbf{E}c, w) = 1$.

 ∃ >
 ∃ >
 ∃

 </

イロト イヨト イヨト

- The language of *FFDE* also includes an identity predicate =. The extension $i_+(w)$ of = at w is a **congruence relation** on w, that is, an equivalence relation such that:
 - For every *n*-ary predicate letter *P* and every $a_1, \ldots, a_n, b_1, \ldots, b_n \in d(w)$, if $\langle a_i, b_i \rangle \in i_+(w)$, for every $1 \le i \le n$, then:
 - ★ $\langle a_1, \ldots, a_n \rangle \in P^w_+$ iff $\langle b_1, \ldots, b_n \rangle \in P^w_+$;
 - $\bigstar \langle a_1, \ldots, a_n \rangle \in P^w_- \text{ iff } \langle b_1, \ldots, b_n \rangle \in P^w_-;$
- ='s anti-extension i_−(w) at w is any binary relation on d(w) that satisfies the following condition:
 - If there is an *n*-ary predicate letter *P* such that $\langle \dots a \dots \rangle \in P_+^w$ and $\langle \dots b \dots \rangle \in P_-^w$, then $\langle a, b \rangle \in i_-(w)$ and $\langle b, a \rangle \in i_-(w)$.
- The conditions placed on i₊(w) are supposed to ensure the validity of the usual rules of identity, viz., = I and = E (indiscernibility of identicals).
- The conditions placed on *i*₋(*w*) are supposed to ensure the validity of the following rule:

$$Pc_1, \neg Pc_2 \vDash c_1 \neq c_2$$

Henrique Antunes

<ロト < 回ト < 巨ト < 巨ト -

(skip)

Model

Let $\mathcal{L} = \langle \mathcal{C}, \mathcal{P} \rangle$ be a first-order language. A (**Kripke** *FFDE*-)**model** \mathcal{K} for \mathcal{L} is a structure $\langle W, \leq, d, I, i_+, i_- \rangle$ such that: (i) W is a non-empty set of **stages**; (ii) \leq (**accessibility relation**) is a pre-order on W; (iii) d is a function on W such that d(w) is a set (the **domain** of w) satisfying the following condition: if $w \leq w'$, then $d(w) \subseteq d(w')$; (iv) I (interpretation function) is a partial function on $(\mathcal{C} \cup \mathcal{P}) \times W$ such that:

- For every individual constant $c \in C$, if I(c, w) is defined, then $I(c, w) \in d(w)$;
- For every individual constant $c \in C$, if I(c, w) is defined, then I(c, w) = I(c, w'), for every $w' \ge w$;
- For every *m*-ary predicate letter $P \in \mathcal{P}$, I(P, w) is the pair $\langle P_+^w, P_-^w \rangle$ such that $P_+^w, P_-^w \subseteq d(w)^m$ and if $w \le w'$, then $P_+^w \subseteq P_+^{w'}$ and $P_-^w \subseteq P_-^{w'}$.

Э

21/48

イロト イヨト イヨト

(skip)

Model

(v) i_+ and i_- are functions on W such that $i_+(w)$ and $i_-(w)$ are binary relations on d(w) that satisfy the following conditions:

(a) i₊(w) is a congruence relation on d(w). That is, i₊(w) is an equivalence relation such that for every P ∈ P and a₁,..., a_m, a'₁,..., a'_m ∈ d(w), if (a_j, a'_j) ∈ i₊(w), for every 1 ≤ j ≤ m, then (a₁,..., a_m) ∈ P^w₊ iff (a'₁,..., a'_m) ∈ P^w₊, and (a₁,..., a_m) ∈ P^w₋;
(b) For every a, a' ∈ d(w), if there is an m-ary predicate P ∈ P⁼⁼ and an m-tuple (...a...) of elements of d(w) such that (...a...) ∈ P^w₊ and (...a'...) ∈ P^w₋, then (a, a') ∈ i₋(w) and (a', a) ∈ i₋(w).
(c) For every w, w' ∈ W, if w ≤ w', then i₊(w) ⊆ i₊(w') and i₋(w) ⊆ i₋(w').

イロト イヨト イヨト

(skip)

Valuation

Let \mathcal{L} be a first-order language and let \mathcal{K} be a Kripke model for \mathcal{L} . The valuation function induced by \mathcal{K} is the mapping $v: Sent(\mathcal{L}_{\mathcal{K}}) \times W \longrightarrow \{0,1\}$ satisfying the following conditions:

$$(v1) v(\mathbf{E}c, w) = 1$$
 iff $\widehat{\mathcal{I}}(c, w)$ is defined.

(v2)
$$v(\neg \boldsymbol{E} c, w) = 1$$
 iff $\widehat{\mathcal{I}}(c, w)$ is undefined.

(v3)
$$v(c_1 = c_2, w) = 1$$
 iff $\widehat{\mathcal{I}}(c_1, w)$ and $\widehat{\mathcal{I}}(c_2, w)$ are defined and $\langle \widehat{\mathcal{I}}(c_1, w), \widehat{\mathcal{I}}(c_1, w) \rangle \in i_+(w);$

(v4)
$$v(c_1 \neq c_2, w) = 1$$
 iff $\widehat{\mathcal{I}}(c_1, w)$ and $\widehat{\mathcal{I}}(c_2, w)$ are defined and $\langle \widehat{\mathcal{I}}(c_1, w), \widehat{\mathcal{I}}(c_1, w) \rangle \in i_-(w);$

- (v5) For every *m*-ary predicate letter $P \in \mathcal{P}$, $v(Pc_1 \dots c_m, w) = 1$ iff $\widehat{\mathcal{I}}(c_i, w)$ is defined, for every $1 \le i \le m$, and $\langle \widehat{\mathcal{I}}(c_1, w), \dots, \widehat{\mathcal{I}}(c_m, w) \rangle \in P^w_+$;
- (v6) For every *m*-ary predicate letter $P \in \mathcal{P}$, $v(\neg Pc_1 \dots c_m, w) = 1$ if $\widehat{\mathcal{I}}(c_i, w)$ is defined, for every $1 \le i \le m$, and $\langle \widehat{\mathcal{I}}(c_1, w), \dots, \widehat{\mathcal{I}}(c_m, w) \rangle \in P_-^w$;

(skip)

Valuation

(((

<ロト < 団ト < 三ト < 三ト E DQC 01/24/2024

24 / 48

Positive sentential rules

$$\frac{\alpha \quad \beta}{\alpha \land \beta} \land I \qquad \frac{\alpha \land \beta}{\alpha} \land E \quad \frac{\alpha \land \beta}{\beta}$$

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix}^{i} & [\beta]^{i} \\ \vdots & \vdots \\ \vdots & \vdots \\ \gamma & \gamma & \gamma \\ \gamma & \forall E^{i} \end{bmatrix}$$

01/24/2024 25/48

1

990

イロト イロト イモト イモト

Negative sentential rules

$$\frac{\neg \alpha}{\neg (\alpha \land \beta)} \neg \land I \frac{\neg \beta}{\neg (\alpha \land \beta)} \qquad \frac{\neg (\alpha \land \beta)}{\neg (\alpha \land \beta)} \qquad \frac{\neg (\alpha \land \beta)}{\gamma} \qquad \frac{\neg (\alpha \land \beta)}{\gamma} \neg \land E^{i}$$

$$\frac{\neg \alpha}{\neg (\alpha \lor \beta)} \neg \lor I \qquad \frac{\neg (\alpha \lor \beta)}{\neg \alpha} \neg \lor E \frac{\neg (\alpha \lor \beta)}{\neg \beta}$$

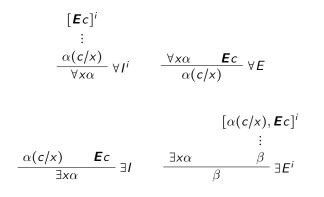
$$\frac{\alpha}{\neg \neg \alpha} DN \frac{\neg \neg \alpha}{\alpha}$$

1

イロト イロト イモト イモト

01/24/2024

Positive quantifier rules



01/24/2024 27/48

E

Sar

<ロト <回ト < 注ト < 注ト

Negative quantifier rules

$$\begin{bmatrix} \neg \alpha(c/x), \mathbf{E}c \end{bmatrix}^{i} \\ \vdots \\ \neg \forall x\alpha \qquad \neg \forall x\alpha \qquad \beta \\ \neg \forall x\alpha \qquad \beta \\ \neg \forall E^{i} \\ \vdots \\ \frac{\neg \alpha(c/x)}{\neg \exists x\alpha} \neg \exists I^{i} \qquad \frac{\neg \exists x\alpha \qquad \mathbf{E}c}{\neg \alpha(c/x)} \neg \exists E$$

01/24/2024 28/48

1

990

<ロト <回ト < 注ト < 注ト

Identity rules

$$\frac{Ec}{c=c} = I$$

$$\frac{\alpha(c_1/x) \quad c_1 = c_2}{\alpha(c_2/x)} = E$$

(α is an atomic formula or the negation of an atomic formula)

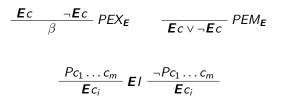
$$\frac{\alpha(c_1/x) \quad \neg \alpha(c_2/x)}{c_1 \neq c_2} \neq I$$

(α is an atomic formula)

<ロト < 回ト < 巨ト < 巨ト

nac

E-rules



- Rules *PEX_E* and *PEM_E* correspond to the fact that *E* behaves classically in *FFDE*.
- The left version of rule *E1* corresponds to the fact that *FFDE* is a negative free logc.
- The contrapositive of the left version of rule *E1* does not hold:

$$\frac{\neg \mathbf{E} c}{\neg Pc_1 \dots c_m}$$

イロト イヨト イヨト

(skip)

Generalized = E and $\neq I$

• If α has at most x free, then

$$\alpha(c_1/x), c_1 = c_2 \vDash \alpha(c_2/x)$$

• If x is free in every subformula of α , then

$$\alpha(c_1/x), \neg \alpha(c_2/x) \vDash c_1 \neq c_2$$

Counter-example

Let $\mathcal{K} = \langle W, \leq, d, I, i_+, i_- \rangle$ be an *FFDE*-model such that $W = \{w\}$, $d(w) = \{1, 2\}$, $i_+(w) = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle\}$, and $i_-(w) = \{\langle 2, 2 \rangle\}$. Suppose that $I(c_1, w) = 1$ and $I(c_2, w) = 2$. Suppose further that $Q^w_+ = \{2\}$ and $Q^w_- = \{2\}$. Thus, $\mathcal{K}, w \models Qc_2$ and $\mathcal{K}, w \models \neg Qc_2$. Letting $P^w_+ = \{1\}$ and $P^+_- = \emptyset$, it then follows that $\mathcal{K}, w \models Pc_1 \land Qc_2$ and $\mathcal{K}, w \models \neg (Pc_1 \land Qc_2)$. Therefore, even though both sentences hold in \mathcal{K} and w, $c_1 \neq c_2$ does not.

- Paradox I shows that CP cannot be assumed to hold in an explosive logic.
- Paradox II shows that even if the underlying logic is non-explosive (i.e., is paraconsistent), CP leads to triviality provided that the logic has an implication connective → w.r.t. which *modus ponens* is valid.
- What if the underlying logic (i) is paraconsistent and (ii) lacks an implication connective w.r.t. which *modus ponens* is valid?
- Let *PFFDE*, which is the positive version of *FFDE*, be the logic that results from dropping both versions of rule *E1*.
- Is the theory that results from adding CP to *PFFDE* non-trivial?
- Unless CP is subject to certain restrictions, the answer is "No".

イロト イロト イヨト イヨト

• First, since *E* behaves classically, the following instance of CP leads immediatly to triviality (by *PEM_E*):

$$E_{ix}(E_{x} \land \neg E_{x}) \land \neg E_{ix}(E_{x} \land \neg E_{x})$$

• Second, *PFFDE* + CP is trivial even if *E* is required not to occur in α .

Let β be any sentence and consider the following formula:

 $\mathbf{x} = \mathbf{x} \wedge \beta$

By CP, it follows that:

(*)
$$\imath x(x = x \land \beta) = \imath x(x = x \land \beta) \land \beta$$

By applying $\wedge E$ to (*), one can then infer β .

イロト イロト イヨト イヨト

- One might hope that requiring x to be free in every subformula of α in CP would avoid the paradox above.
- This is true, but this move won't be capable of avoiding the following undesirable result:

Consider the following formula:

$$\forall y(y = \mathbf{x})$$

By CP, it follows that:

$$\forall y(y = \imath x \forall y(y = x))$$

In then follows that if there exists at least one object, then there exists exactly one object:

$$\exists y \mathbf{E} y \vdash \exists x \forall y (y = x)$$

Henric	шe	Anti	ines

3

イロト イロト イヨト イヨト

Sac

34 / 48

- The negative results above carry over to every extension of *PFFDE*, such as the positive free versions of *LP* (the **logic of paradox** [25]) and *N*4.
- Since *FDE* is a rather weak logic, there is little hope of coming up with a non-trivial free theory of DDs one of whose axioms is CP seems to be a hopeless task.
- One can still formulate more modest theories of DDs that are based on *FDE* and some of its extensions.
- These theories include inference rules that correspond to some of the axioms and theorems of the theories in the spectrum of free theories of DDs.

イロト イロト イヨト イヨト

Free theories of DDs based on FDE

Minimal theory of DDs based on FDE

Let mFD_F be the system that results from adding the following rules to *PFFDE*:

$$\frac{\mathbf{E}_{1x\alpha}}{\exists x\alpha} PR1 \qquad \frac{\mathbf{E}_{1x\alpha} \quad \mathbf{E}t \quad \alpha(t/x)}{t = 1x\alpha} PR2$$

$$\frac{[\mathbf{E}_{x,\alpha}, \mathbf{E}_{y,\alpha}(y/x)]^{i}}{\vdots}$$

$$\frac{\exists x\alpha \qquad x = y}{\mathbf{E}_{1x\alpha}} PR3^{i}$$

• *PR*1, *PR*2, and *PR*3 correspond respectively to the following theorems of mFD:

$$E \imath x \alpha \to \exists x \alpha$$
$$E \imath x \alpha \to \forall x (\alpha \to x = \imath x \alpha)$$
$$\{\exists x \alpha \land \forall x \forall y [(\alpha \land \alpha(y/x)) \to x = y]\} \to E \imath x \alpha$$

Henrique Antunes

イロト イヨト イヨト イ

36 / 48

A few consequences:

- $E \imath x \alpha \vdash \imath x \alpha = \imath x \alpha$
- $E_{ix\alpha} \vdash \alpha(ix\alpha/x)$ (restricted characterization principle)
- $\vdash \forall y(\imath x(x=y)=y)$ (restricted cancellation principle)
- The following rule is derivable in mFD_F:

$$\frac{\boldsymbol{E}_{1}\boldsymbol{x}\boldsymbol{\alpha} \quad \boldsymbol{E}\boldsymbol{t}_{1} \quad \boldsymbol{\alpha}(\boldsymbol{t}_{1}/\boldsymbol{x}) \quad \boldsymbol{E}\boldsymbol{t}_{2} \quad \boldsymbol{\alpha}(\boldsymbol{t}_{2}/\boldsymbol{x})}{\boldsymbol{t}_{1} = \boldsymbol{t}_{2}} DR1$$

• *DR*1 corresponds to the following theorem of mFD:

$$\mathbf{E}_{i} x \alpha \to \forall x \forall y [(\alpha \land \alpha(y/x)) \to x = y]$$

(日)

• The following rules are derivable in mFD_F:

$$\frac{\mathbf{E}_{1\times\alpha} \qquad \beta(1\times\alpha/x) \qquad \mathbf{E}t \qquad \alpha(t/x)}{\beta(t/x)} DR2$$

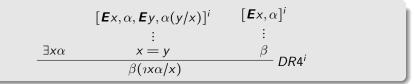
$$\begin{bmatrix} \mathbf{E}_{x,\alpha} \\ \vdots \\ \frac{\mathbf{E}_{1\times\alpha} \qquad \beta}{\beta(1\times\alpha/x)} DR3
\end{bmatrix}$$

• DR2 and DR3 correspond respectively to the left-to-right and to the right-to-left directions of the consequent of the following theorem of mFD:

$$\mathbf{E} \imath \mathbf{x} \alpha \to [\beta(\imath \mathbf{x} \alpha / \mathbf{x}) \leftrightarrow \forall \mathbf{x} (\alpha \to \beta)]$$

(日)

• The following rule can be derived in mFD_F:



• DR4 corresponds to the following theorem of mFD:

 $\{\exists x\alpha \land \forall x \forall y [(\alpha \land \alpha(y/x)) \to x = y] \land \forall x(\alpha \to \beta)\} \to \beta(\imath x\alpha/x)$

which, in turn, is equivalent to the right-to-left direction of the unconditionalized version of Russell's equivalence II:

$$\exists y [\forall x (\alpha \leftrightarrow x = y) \land \beta] \to \beta (\imath x \alpha / y)$$

• The following rule is derivable in mFD_F:

$$\begin{bmatrix} \mathbf{E}x, \alpha \end{bmatrix}^{i} \qquad \begin{bmatrix} \mathbf{E}x, \beta \end{bmatrix}^{i} \\
\vdots \qquad \vdots \\
\frac{\mathbf{E}x\alpha \vee \mathbf{E}x\beta}{\alpha} \qquad \beta \qquad \alpha}{\alpha} DR5^{i}$$

• DR5 corresponds to the following theorem of mFD:

 $(\mathbf{E}\imath x \alpha \lor \mathbf{E}\imath x \beta) \rightarrow [\forall x (\alpha \leftrightarrow \beta) \rightarrow \imath x \alpha = \imath x \beta]$

Henrique Antunes

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < ○ < ○</p>

 01/24/2024
 40 / 48

• One can obtain a Russellian free theory of DDs by adding *PR*1-*PR*3 and the following rules to *FFDE*:

$$\frac{[x:\alpha]t}{\mathbf{E}t} \qquad \frac{[x:\alpha]t}{\alpha(t/x)} \qquad \frac{\mathbf{E}t \quad \alpha(t/x)}{[x:\alpha]t}$$

- Also, by adding suitable rules to mFD_F one can obtain theories that resemble those in van Fraassen's spectrum.
- For example, one can obtain versions of FDLamb and FDThom that are based on *PFFDE* by adding the following rules to mFD_F, respectively:

$$\frac{\alpha(t/x) \quad \forall x \neg \mathbf{E} x}{\alpha(\imath x \alpha/x)} \text{ FDLamb } \frac{\alpha(t/x) \quad \neg \mathbf{E} t}{\alpha(\imath x \alpha/x)} \text{ FDThom}$$

SOR

41 / 48

< ロ > < 同 > < 三 > < 三 >

The road ahead

- Formulate a formal semantics w.r.t. which mFD_F is both sound and complete.
- Formulate negative natural deduction rules for *i*.

$$\frac{\neg \exists x \alpha}{\neg \mathbf{E} \imath x \alpha} \qquad \frac{\exists x \exists y (\alpha \land \alpha (y/x) \land x \neq y)}{\neg \mathbf{E} \imath x \alpha}$$

- The above rules won't work, for while the occurrences of ¬ in the premises are paraconsistent and paracomplete, its occurrences in the conclusions behave classically.
- Specifically, ¬∃*xFx* holds if every element of the domain of a stage belongs to the anti-extension of *F*. However, this does not prevent the extension of *F* from being a singleton.
- Similarly, ∃x∃y(Fx ∧ Fy ∧ x ≠ y) can hold even if the extension of F is a singleton {a}, for a may be such that ⟨a, a⟩ belong both to the extension and to the anti-extension of =.

イロト 不同ト イヨト イヨト

The road ahead

- Investigate the properties of the *FDE*-versions of the therioes in van Fraassen's spectrum, as well as the relationships among them.
- Formulate free theories of DDs that are based on non-classical extensions of *FDE*:
 - ▶ LP [25] and N4 [1]
 - Logics of formal inconsistency and undeterminedness (LFIUs)
 ★ LF/1 [9, 11, 13] and BS4 [23, 24]
 - ▶ Logics of evidence and truth (LETs)

```
★ LET<sub>F</sub>, LET<sub>J</sub>, LET<sub>K</sub> [4, 10, 27]
```

- ★ LET_F^+ and LET_K^+ [12]
- Investigate if and how formal theories of DDs based on *LFIUs* can be leveraged to yield a philosophically well-motivated formal rendering of a **Meinongian theory of objects**.

イロト イボト イヨト イヨト

Thanks!

Henrique Antunes

Free theories of DDs based on FDE

<ロ><部</p>

01/24/2024

44 / 48

References |

- [1] A. Almukdad and D. Nelson. Constructible falsity and inexact predicates. The Journal of Symbolic Logic, 49:231-3, 1984.
- H. Antunes and A. Rodrigues. Variable domain first-degree entailment and some of [2] its children. Studia Logica, 2024. Forthcoming.
- [3] H. Antunes and A. Rodrigues. On universally free Belnap-Dunn's four-valued logic and Nelson's n4. 2024. Forthcoming.
- [4] H. Antunes, W. Carnielli, A. Kapsner, and A. Rodrigues. Kripke-style models for logics of evidence and truth. Axioms, 9:1-16, 2002.
- [5] H. Antunes, A. Rodrigues, M.E. Coniglio, and W. Carnielli. Valuation semantics for first-order logics of evidence and truth. Journal of Philosophical Logic, 51:1141-73, 2022
- [6] N.D. Belnap. How a computer should think. In G. Ryle, editor, Contemporary Aspects of Philosophy. Oriel Press, 1977. Reprinted in New Essays on Belnap-Dunn Logic, Springer, 2019, pp. 35-55.
- [7] N.D. Belnap. A useful four-valued logic. In G. Epstein and J.M. Dunn, editors, Modern Uses of Multiple Valued Logics. D. Reidel, 1977. Reprinted in New Essays on Belnap-Dunn Logic, Springer, 2019.

イロト イポト イヨト イヨト 3 01/24/2024

References II

- [8] E. Bencivenga. Free logics. In D.M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 5, pages 147–196. Springer, 2 edition, 2002.
- [9] W. Carnielli and H. Antunes. An objectual semantics for first-order *lfi1* with an application to free logics. In E. H. Haeusler, L. C. Pereira, and J. P. Viana, editors, *A Question is More Illuminating than an Answer: A Festscrift for Paulo A. S. Veloso*, pages 58–91. College Publications, 2021.
- [10] W. Carnielli and A. Rodrigues. An epistemic approach to paraconsistency: A logic of evidence and truth. *Synthese*, 196:3789–813, 2017.
- [11] W. Carnielli, J. Marcos, and S. de Amo. Formal inconsistency and evolutionary databases. *Logic and Logical Philosophy*, 8:115–52, 2000.
- [12] M.E. Coniglio and A Rodrigues. From belnap-dunn four-valued logic to six-valued logics of evidence and truth. *Studia Logica*, Publishied Online:1–46, 2023.
- [13] S. de Amo, W. Carnielli, and J. Marcos. A logical framework for integrating inconsistent information in multiple databases. In T. Eiter and K-D. Schewe, editors, *Foundations of Information and Knowledge Systems*, pages 67–84. Springer, 2002.
- [14] J.M. Dunn. Intuitive semantics for first-degree entailments and 'coupled trees'. *Philosophical Studies*, 29:149–168, 1976. Reprinted in *New Essays on Belnap-Dunn Logic*, Springer, 2019.

< ロ > < 団 > < 三 > < 三 > < 三 > の < ()</p>

01/24/2024

References III

- [15] K. Lambert. Notes on E! III: A theory of descriptions. *Philosophical Studies*, 13: 51–59, 1962.
- [16] K. Lambert. Russell's theory of definite descriptions. *Dialectica*, 44:137–152, 1990.
- [17] K. Lambert. Free logic and definite descriptions. In E. Morscher and A. Hieke, editors, New Essays in Free Logic, pages 37–47. Springer, 2001.
- [18] K. Lambert. The philosophical foundations of free logic. In Free Logic: Selected Essays. Cambridge University Press, 2003.
- [19] H. Leblanc and R.H. Thomasson. Completeness theorems for some presupposition-free logics. *Fundamenta Mathematicae*, 62:125–164, 1968.
- [20] S. Lehmann. More free logic. In D.M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 5, pages 197–259. Springer, 2 edition, 2002.
- [21] D. Nelson. Constructible falsity. The Journal of Symbolic Logic, 14:16-26, 1949.
- [22] J. Nolt. Free logics. In D. Jaquette, editor, *Philosophy of Logic*, Handbook of the Philosophy of Logic, pages 1023–1060. North Holland, 5 edition, 2007.
- [23] H. Omori and K. Sano. da costa meets belnap and nelson. In R. Ciuni, H. Wansing, and C. Willkommen, editors, *Recent Trends in Philosophical Logic*, pages 145–66. Springer, 2014.

References IV

- [24] H. Omori and T. Waragai. Some observations on the systems LFI1 and LFI1*. In F. Morvan, A.M. Tjoa, and R. Wagner, editors, *Proceedings of DEXA2011*, pages 320–4. IEEE computer society, 2011.
- [25] G. Priest. The logic of paradox. Journal of Philosophical Logic, 8:219-41, 1979.
- [26] A. Rodrigues and H. Antunes. First-order logics of evidence and truth with constant and variable domains. *Logica Universalis*, 16:419–449, 2022.
- [27] A. Rodrigues, J. Bueno-Soler, and W. Carnielli. Measuring evidence: A probabilistic approach to an extension of belnap-dunn logic. *Synthese*, 198:5451–80, 2020.
- [28] R. Scales. Attribution and Reference. PhD thesis, University of California at Irvine, 1969.
- [29] D. Scott. Existence and description in formal logic. In R. Schoenman, editor, Bertrand Russell: Philosopher of the Century. Essays in his Honour, pages 181–200. Allen and Unwin, 1967.