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DEFINITE DESCRIPTIONS

Russellian approach:

First presented in ‘On denoting’ (Mind 1905).

Formally developed in Principia Mathematica.

Definite descriptions represented by means of iota-operator (first
appeared in Peano):

ıxϕ(x) – the (unique) object x being ϕ

ψ(ıxϕ(x)) – The only x being ϕ is ψ.
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DEFINITE DESCRIPTIONS

Russellian approach:

Troubles with definite descriptions treated as names (Russellian
puzzles):

the law of excluded middle;

contradictions and nonbeing;

intensional identity.

How to avoid problems?

Show that definite descriptions are not genuine names.
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DEFINITE DESCRIPTIONS

Russellian approach:

Contextual Definitions in PM:
ψ(ıxϕ(x)) := ∃y(∀x(ϕ(x)↔ x = y) ∧ ψ(y))

t = ıxϕ(x) := ∀x(ϕ(x)↔ x = t)
E ıxϕ(x) := ∃y∀x(ϕ(x)↔ x = y)

Disadvantages:

complicated rules of translation;

scoping difficulties;

provability of troublesome theses;

rejection of intuitively valid formulae;

running into contradiction.
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DEFINITE DESCRIPTIONS

Russellian approach – scoping difficulties:

How to read ¬BıxKx =⇒?

1. ∃y(∀x(Kx ↔ x = y) ∧ ¬By)

or

2. ¬∃y(∀x(Kx ↔ x = y) ∧ By)

In PM special scope operators attached.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



DEFINITE DESCRIPTIONS

Russellian approach – scoping difficulties:

How to read ¬BıxKx =⇒?

1. ∃y(∀x(Kx ↔ x = y) ∧ ¬By)

or

2. ¬∃y(∀x(Kx ↔ x = y) ∧ By)

In PM special scope operators attached.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



DEFINITE DESCRIPTIONS

Russellian approach – scoping difficulties:

How to read ¬BıxKx =⇒?

1. ∃y(∀x(Kx ↔ x = y) ∧ ¬By)

or

2. ¬∃y(∀x(Kx ↔ x = y) ∧ By)

In PM special scope operators attached.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



DEFINITE DESCRIPTIONS

Russellian approach – scoping difficulties:

How to read ¬BıxKx =⇒?

1. ∃y(∀x(Kx ↔ x = y) ∧ ¬By)

or

2. ¬∃y(∀x(Kx ↔ x = y) ∧ By)

In PM special scope operators attached.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



DEFINITE DESCRIPTIONS

Russellian approach – scoping difficulties:

How to read ¬BıxKx =⇒?

1. ∃y(∀x(Kx ↔ x = y) ∧ ¬By)

or

2. ¬∃y(∀x(Kx ↔ x = y) ∧ By)

In PM special scope operators attached.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



DEFINITE DESCRIPTIONS

Russellian approach – wanted and unwanted:

Russell’s schema implies:

1. ∃y(∀x(ϕ(x)↔ x = y) ∧ ψ(y))→ ψ(ıxϕ(x))

and

2. ψ(ıxϕ(x))→ ∃y(∀x(ϕ(x)↔ x = y) ∧ ψ(y))

which implies:

ψ(ıxϕ(x))→ E ıxϕ(x)

On the other hand:

ıxϕ(x) = ıxϕ(x) does not hold for improper descriptions.
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DEFINITE DESCRIPTIONS

Russellian approach – the risk of contradiction:

ψ(ıxϕ(x)) := ∃y(∀x(ϕ(x)↔ x = y) ∧ ψ(y))

⇓

A(ıx(Bx ∧ ¬Bx)) ∨ ¬A(ıx(Bx ∧ ¬Bx)) :=
∃y(∀x(Bx ∧ ¬Bx ↔ x = y) ∧ (Ay ∨ ¬Ay))

leads to

Ba ∧ ¬Ba
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DEFINITE DESCRIPTIONS

Russellian approach – the risk of contradiction:

also t = ıxϕ(x) := ∀x(ϕ(x)↔ x = t) leads to contradiction if
unrestricted reflexivity of identity and quantifier rules are allowed.

1. ıx(Ax ∧ ¬Ax) = ıx(Ax ∧ ¬Ax)
2. ∀x(Ax ∧ ¬Ax ↔ x = ıx(Ax ∧ ¬Ax)) 1
3. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax))↔ ıx(Ax ∧ ¬Ax) =
ıx(Ax ∧ ¬Ax)) 2
4. A(ıx(Ax ∧ ¬Ax)) ∧ ¬A(ıx(Ax ∧ ¬Ax)) 3, 1
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DEFINITE DESCRIPTIONS

Russell revisited:

How to develop the Russellian approach in the way avoiding at
least some problems while treating DD as genuine terms?

Two solutions:

Kalish, Montague and Mar [1980] (also Burge [1974],
Feferman [1995]) =⇒ Indrzejczak [RSL 2022]

use lambda-operator =⇒ [Indrzejczak 2020, Indrzejczak and
Zawidzki 2022, Indrzejczak and Kürbis 2023]
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DEFINITE DESCRIPTIONS

Russellian approach in KMM - the main features:

1 fixed evaluation (as false) of all elementary formulae with
nondenoting terms;

2 quantification rules of universal instantiation UI and
existential generalization EG restricted to variables;

3 identity with reflexivity restricted to variables;

4 taking object language counterpart of Russellian definition as
an axiom characterising descriptions (we will call it RA):

RA ψ[x/ıyϕ]↔ ∃x(∀y(ϕ↔ y = x) ∧ ψ) with ψ atomic.

Note that if equalities are treated as atomic then RA implies:
(DP-1) Rnt1...tn ` ∃xx = t1 ∧ ... ∧ ∃xx = tn
(DP-2) t1 = t2 ` ∃xx = t1

moreover, due to (DP-1) RA is equivalent to:
LA ∀y(y = ıxϕ(x)↔ ∀x(ϕ(x)↔ x = y)
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DEFINITE DESCRIPTIONS

Russell revisited - KMM:

So what is the system we call KMM?
Natural Deduction system for pure FOL, with UI and EG restricted
to variables, completed with the following rules:

(ID) ∅ ` b = b
(LL) t1 = t2, ϕ[x/t1] ` ϕ[x/t2]
(DP-1) Rnt1...tn ` ∃xx = t1 ∧ ... ∧ ∃xx = tn
(DP-2) t1 = t2 ` ∃xx = t1

(RD) ∅ ` ∀x(x = ıyϕ↔ ∀y(ϕ↔ y = x))

How to change it into well-behaved SC?

Andrzej Indrzejczak
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DEFINITE DESCRIPTIONS

Why the point 2 is very important?:

The problem with (∀ ⇒) and (⇒ ∃) if we admit descriptions as
instantiated terms.

Example: From ∀xAx we can infer A(ıx(∃y(Bxy → ¬Cxy))).

In the framework of SC we have:

A(ıx(∃y(Bxy → ¬Cxy))), Γ⇒ ∆
∀xAx , Γ⇒ ∆

the subformula property lost.

Andrzej Indrzejczak
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Sequents versus rules

Convenient technical device: RM-theorem – Indrzejczak [2013]

For any sequent Γ⇒ ∆ with Γ = {ϕ1, ..., ϕk} and
∆ = {ψ1, ..., ψn}, k ≥ 0, n ≥ 0 there is 2k+n − 1 equivalent rules
captured by the general schema:

Π1,⇒ Σ1, ϕ1, ..., Πi ⇒ Σi , ϕi ψ1,Πi+1 ⇒ Σi+1, ..., ψj ,Πi+j ⇒ Σi+j

Γ−i ,Π1, ...,Πi ,Πi+1, ...,Πi+j ⇒ Σ1, ...,Σi ,Σi+1, ...,Σi+j∆
−j

where Γ−i = Γ− {ϕ1, ..., ϕi} and ∆−j = ∆− {ψ1, ..., ψj} for
0 ≤ i ≤ k , 0 ≤ j ≤ n.

Andrzej Indrzejczak
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SEQUENT CALCULUS FOR DEFINITE DESCRIPTIONS

Aims and Problems:

Provide cut-free SC with rules for DD possibly close to standard
ones.

The problems and possible choices:

1 the choice of principal formula;

2 the choice of side formulae.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



SEQUENT CALCULUS FOR DEFINITE DESCRIPTIONS

Aims and Problems:

Provide cut-free SC with rules for DD possibly close to standard
ones.

The problems and possible choices:

1 the choice of principal formula;

2 the choice of side formulae.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



SEQUENT CALCULUS FOR DEFINITE DESCRIPTIONS

Aims and Problems:

Provide cut-free SC with rules for DD possibly close to standard
ones.

The problems and possible choices:

1 the choice of principal formula;

2 the choice of side formulae.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



SEQUENT CALCULUS FOR DEFINITE DESCRIPTIONS

Aims and Problems:

Provide cut-free SC with rules for DD possibly close to standard
ones.

The problems and possible choices:

1 the choice of principal formula;

2 the choice of side formulae.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



SEQUENT CALCULUS FOR DEFINITE DESCRIPTIONS

The basis for the rules:

1. The choice of principal formula:

(a) ψ(ιxϕ) or
(b) t = ιxϕ

(b) is better (no nested quantifiers in the definiens)

2. The choice of side formulae:

t = ıxϕ(x)↔ ϕ[x/t] ∧ ∀x(ϕ(x)→ x = t)

or

t = ıxϕ(x)↔ ∀x(ϕ(x)↔ x = t)

Andrzej Indrzejczak
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SEQUENT CALCULUS FOR DEFINITE DESCRIPTIONS

Construction of rules for descriptions:

From:

t = ıxϕ(x)↔ ∀x(ϕ(x)↔ x = t)

we obtain two sequents:

t = ıxϕ(x)⇒ ∀x(ϕ(x)↔ x = t)
∀x(ϕ(x)↔ x = t)⇒ t = ıxϕ(x)

Each may be changed into introduction rule by RM theorem:

Γ⇒ ∆,∀x(ϕ(x)↔ x = t)

Γ⇒ ∆, t = ıxϕ(x)

and

∀x(ϕ(x)↔ x = t), Γ⇒ ∆

t = ıxϕ(x), Γ⇒ ∆

Andrzej Indrzejczak
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SEQUENT CALCULUS FOR DEFINITE DESCRIPTIONS

Rules for descriptions:

We continue with decomposition of side-formula obtaining:

ϕ(a), Γ1 ⇒ ∆2, a = t a = t, Γ2 ⇒ ∆2, ϕ(a)

Γ⇒ ∆, t = ıxϕ(x)

where a is not in Γ,∆, ϕ; and

Γ1 ⇒ ∆1, ϕ(a), a = t ϕ(a), a = t, Γ2 ⇒ ∆2

t = ıxϕ(x), Γ⇒ ∆

Both rules satisfy subformula property and are reductive in the
process of cut elimination.

Andrzej Indrzejczak
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process of cut elimination.
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PROBLEM WITH =

Clash of DD-rules and identity-rules:

Reductivity is lost if one premiss is obtained via rule for DD and
the second via rule for =. Schematically:

Γ1 ⇒ ∆1 ... Γk ⇒ ∆k

Γ⇒ ∆, d = t
Π1 ⇒ Σ1 ... Πn ⇒ Σn

d = t,Π⇒ Σ
(Cut)

Γ,Π⇒ ∆,Σ
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Sequents versus rules

Rule-maker theorem – special case LL:

(2 =)
ϕ[x/τ2], Γ⇒ ∆

τ1 = τ2, ϕ[x/τ1], Γ⇒ ∆
(3 =)

Γ⇒ ∆, ϕ[x/τ1]
τ1 = τ2, Γ⇒ ∆, ϕ[x/τ2]

Negri and von Plato 2001 Manzano 2005

(4 =) Γ⇒ ∆, τ1 = τ2
ϕ[x/τ1], Γ⇒ ∆, ϕ[x/τ2]

Reeves 1987

(5 =)
Γ⇒ ∆, τ1 = τ2 Π⇒ Σ, ϕ[x/τ1]

Γ,Π⇒ ∆,Σ, ϕ[x/τ2]
Indrzejczak 2019

(6 =)
Γ⇒ ∆, τ1 = τ2 ϕ[x/τ2],Π⇒ Σ

ϕ[x/τ1], Γ,Π⇒ ∆,Σ
Baaz and Leitsch 2011

(7 =)
Γ⇒ ∆, ϕ[x/τ1] ϕ[x/τ2],Π⇒ Σ

τ1 = τ2, Γ,Π⇒ ∆,Σ Nagashima 1966

(8 =)
Γ⇒ ∆, τ1 = τ2 Π⇒ Σ, ϕ[x/τ1] ϕ[x/τ2],Λ⇒ Θ

Γ,Π,Λ⇒ ∆,Σ,Θ
Indrzejczak 2018
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SEQUENT CALCULUS G

Structural rules:

(AX ) ϕ⇒ ϕ

(Cut) Γ⇒ ∆, ϕ ϕ,Π⇒ Σ
Γ,Π⇒ ∆,Σ

(W⇒) Γ⇒ ∆
ϕ, Γ⇒ ∆ (⇒W ) Γ⇒ ∆

Γ⇒ ∆, ϕ

(C⇒) ϕ,ϕ, Γ⇒ ∆
ϕ, Γ⇒ ∆ (⇒C ) Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ
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SEQUENT CALCULUS G

Logical rules:

(¬⇒) Γ⇒ ∆, ϕ
¬ϕ, Γ⇒ ∆ (⇒¬) ϕ, Γ⇒ ∆

Γ⇒ ∆,¬ϕ

(∧⇒) ϕ,ψ, Γ⇒ ∆
ϕ∧ψ, Γ⇒ ∆ (⇒∧) Γ⇒ ∆, ϕ Π⇒ Σ, ψ

Γ,Π⇒ ∆,Σ, ϕ∧ψ

(∨⇒) ϕ, Γ⇒ ∆ ψ,Π⇒ Σ
ϕ∨ψ, Γ,Π⇒ ∆,Σ (⇒∨) Γ⇒ ∆, ϕ, ψ

Γ⇒ ∆, ϕ∨ψ

(→⇒) Γ⇒ ∆, ϕ ψ,Π⇒ Σ
ϕ→ψ, Γ,Π⇒ ∆,Σ (⇒→) ϕ, Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ψ

(↔⇒) Γ⇒ ∆, ϕ, ψ ϕ, ψ,Π⇒ Σ
ϕ↔ψ, Γ,Π⇒ ∆,Σ (⇒↔) ϕ, Γ⇒ ∆, ψ ψ,Π⇒ Σ, ϕ

Γ,Π⇒ ∆,Σ, ϕ↔ψ
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SEQUENT CALCULUS G

Quantifier rules:

(∀⇒)
ϕ[x/b], Γ⇒ ∆
∀xϕ, Γ⇒ ∆

(⇒∀)1 Γ⇒ ∆, ϕ[x/a]
Γ⇒ ∆,∀xϕ

(∃⇒)1 ϕ[x/a], Γ⇒ ∆
∃xϕ, Γ⇒ ∆ (⇒∃)

Γ⇒ ∆, ϕ[x/b]
Γ⇒ ∆, ∃xϕ

side conditions:

1.a is not in Γ,∆ and ϕ (b is arbitrary).
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SEQUENT CALCULUS G

Quantifier rules:
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SEQUENT CALCULUS GRDD1

identity, strictness and description rules:

(= +)
ϕ[x/b], Γ⇒ ∆

a = b, ϕ[x/a], Γ⇒ ∆
(= −) b = b, Γ⇒ ∆

Γ⇒ ∆

where ϕ is atomic

(Str) a = d , Γ⇒ ∆
ϕ[x/d ], Γ⇒ ∆

(Str=) a = di , Γ⇒ ∆
d1 = d2, Γ⇒ ∆

where ϕ is atomic but contains at least one occurrence of d and
i ∈ {1, 2} in (Str=); a is not in Γ,∆, ϕ.

(ı⇒)
Γ⇒ ∆, ϕ[x/b], c ≈ b c ≈ b, ϕ[x/b], Γ⇒ ∆

c ≈ ıxϕ, Γ⇒ ∆

(⇒ ı)
c ≈ a, Γ⇒ ∆, ϕ[x/a] ϕ[x/a], Γ⇒ ∆, c ≈ a

Γ⇒ ∆, c ≈ ıxϕ
where a is not in Γ,∆, ϕ, c ≈ a means c = a or a = c .
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SEQUENT CALCULUS GRDD1

identity, strictness and description rules:

(= +)
ϕ[x/b], Γ⇒ ∆

a = b, ϕ[x/a], Γ⇒ ∆
(= −) b = b, Γ⇒ ∆

Γ⇒ ∆

where ϕ is atomic

(Str) a = d , Γ⇒ ∆
ϕ[x/d ], Γ⇒ ∆

(Str=) a = di , Γ⇒ ∆
d1 = d2, Γ⇒ ∆

where ϕ is atomic but contains at least one occurrence of d and
i ∈ {1, 2} in (Str=); a is not in Γ,∆, ϕ.

(ı⇒)
Γ⇒ ∆, ϕ[x/b], c ≈ b c ≈ b, ϕ[x/b], Γ⇒ ∆

c ≈ ıxϕ, Γ⇒ ∆

(⇒ ı)
c ≈ a, Γ⇒ ∆, ϕ[x/a] ϕ[x/a], Γ⇒ ∆, c ≈ a

Γ⇒ ∆, c ≈ ıxϕ
where a is not in Γ,∆, ϕ, c ≈ a means c = a or a = c .

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



SEQUENT CALCULUS GRDD1

Problem – the cut elimination does not hold for GRDD1:

ϕ[x/a], Γ1 ⇒ ∆1, a = c a = c, Γ2 ⇒ ∆2, ϕ[x/a]
(⇒ ı)

Γ⇒ ∆, c = ıxϕ

ψ[x/ıxϕ],Π⇒ Σ

c = ıxϕ,ψ[x/c],Π⇒ Σ
(Cut)

ψ[x/c], Γ,Π⇒ ∆,Σ

Ab ⇒ Ab b = a⇒ b = a
(→⇒)

Ab,Ab → b = a⇒ b = a
(∀ ⇒)

Ab, ∀x(Ax → x = a)⇒ b = a
Ab ⇒ Ab

b = a,Aa⇒ Ab
(⇒ ı)

Aa, ∀x(Ax → x = a)⇒ a = ıxAx
AıxAx ⇒ AıxAx

a = ıxAx ,Aa⇒ AıxAx
(Cut)

Aa,Aa, ∀x(Ax → x = a)⇒ AıxAx
(C ⇒)

Aa,∀x(Ax → x = a)⇒ AıxAx
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SEQUENT CALCULUS GRDD1

Problems:

(LL) may be represented by other rules. One way out is to change
(= +) for:

Γ1 ⇒ ∆1, ϕ[x/t1] Γ2 ⇒ ∆2, t1 = t2 ϕ[x/t2], Γ3 ⇒ ∆3
(=)

Γ⇒ ∆

Cut elimination holds but the subformula property fails for the
variant of GRDD1 with (=).
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Sequent Calculus GRDD2

(R)
b = b, Γ⇒ ∆

Γ⇒ ∆
(E)

b1 = b2, Γ⇒ ∆
c = b1, c = b2, Γ⇒ ∆

(L)
ϕ[x/b], Γ⇒ ∆

c = b, ϕ[x/c], Γ⇒ ∆

(ı⇒)
Γ⇒ ∆, ϕ[x/b], c ≈ b c ≈ b, ϕ[x/b], Γ⇒ ∆

c ≈ ıxϕ, Γ⇒ ∆

(⇒ ı)
c ≈ a, Γ⇒ ∆, ϕ[x/a] ϕ[x/a], Γ⇒ ∆, c ≈ a

Γ⇒ ∆, c ≈ ıxϕ

(=⇒)
a1 = d1, a2 = d2, a1 = a2, Γ⇒ ∆

d1 = d2, Γ⇒ ∆

(⇒=)
Γ⇒ ∆, b1 = d1 Γ⇒ ∆, b2 = d2 Γ⇒ ∆, b1 = b2

Γ⇒ ∆, d1 = d2

(Str ⇒)
a1 = d1, . . . , an = dn, ϕ[x1/a1 . . . xn/an], Γ⇒ ∆

ϕ[x1/d1 . . . xn/dn], Γ⇒ ∆

(⇒ Str)
Γ⇒ ∆, b1 = d1 . . . Γ⇒ ∆, bn = dn Γ⇒ ∆, ϕ[x1/b1 . . . xn/bn]

Γ⇒ ∆, ϕ[x1/d1 . . . xn/dn]

where: a, a1, a2 are different eigenvariables; ϕ in (L) is a proper atomic formula; c ≈ t

in rules for ı means that either c = t or t = c; ϕ[x1/d1 . . . xn/dn] in (Str ⇒) and

(⇒ Str) is a proper quasi-atomic formula with exactly n ≥ 1 different definite

descriptions as arguments and ϕ[x1/b1 . . . xn/bn] is a proper atomic formula
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Sequent Calculus GRDD2
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Sequent Calculus GRDD2

The influence of specific features of these rules on cut elimination:
1 if ϕ is a proper atomic formula, it can be active only in the antecedent, due to

(L);

2 if ϕ is a proper q-atomic, it can be active on both sides but only via (Str ⇒)
and (⇒ Str);

3 if it is a d-identity, it can be active on both sides but only via (=⇒) and (⇒=);

4 if it is a mixed-identity, it can be active on both sides but only via (⇒ ı) and
(ı⇒);

5 if it is an atomic identity, it can be active only in the antecedent, due to (E).

If an atomic formula is a cut formula, then in cases 1 and 5, its occurrence in the left
premiss of cut is always parametric =⇒ height-reduction on the left premiss of cut is
always possible.
In cases 2–4, if in at least one premiss of cut it is also parametric, again
height-reduction is applicable. If in both premisses of cut, it is the principal formula
rank-reduction is applicable.
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Sequent Calculus GRDD2

The specific features of this system:

1 If `k Γ⇒ ∆, then `k Γ[a/b]⇒ ∆[a/b], where k is the height
of a proof.

2 If ` Γ⇒ ∆, then ` Γ⇒ ∆ is cut-free provable.

3 If ` Γ⇒ ∆ has a cut-free proof, then it is constructed from
subformulae of formulae occcurring in Γ,∆.

4 If ` Γ⇒ ∆ has a cut-free proof, then the only terms occuring
in it are those already occuring in Γ,∆ and eigenvariables.
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Interpolation Theorem

Craig and Maehara:

logic L satisfies the Craig interpolation property if, for all formulae
ϕ and ψ, if |= ϕ→ ψ, then there is an interpolant χ such that
|= ϕ→ χ, |= χ→ ψ and χ only contains non-logical symbols
common to both ϕ and ψ. Moreover, if ϕ and ψ have no
non-logical symbols in common, then either ¬ϕ is valid or ψ is
valid.

Maehara’s generalized interpolation theorem claims:
If ` Γ⇒ ∆, then for any partition ((Γ1,∆1), (Γ2,∆2)) we can find
ϕ, such that:

1 ` Γ1 ⇒ ∆1, ϕ

2 ` ϕ, Γ2 ⇒ ∆2

3 L(ϕ) ⊆ L(Γ1 t∆1) ∩ L(Γ2 t∆2)

Maehara’s theorem implies Craig’s theorem.
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Interpolation Theorem

Interpolation for GRDD2

Proof: By induction on the height of a proof of Γ⇒ ∆ in
cut-free GRDD2.

The basis (case k = 0) and inductive cases for connectives and
quantifiers as in classical FOL.
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Interpolation Theorem

Interpolation for GRDD2; the case of (R):

For arbitrary partition of the conclusion into (Γ1,∆1) and (Γ2,∆2) by the IH we
have:

1 ` b = b, Γ1 ⇒ ∆1, ϕ

2 ` ϕ, Γ2 ⇒ ∆2

3 L(ϕ) ⊆ L({b = b} t Γ1 t∆1) ∩ L(Γ2 t∆2)

If b is not present in ϕ, then ϕ satisfies also conditions for being an interpolant
of the conclusion; provability and language conditions are trivially satisfied.
Otherwise we must consider if b ∈ L(Γ1 t∆1) or not.
In the first case ϕ is intact.
In the second it has the form ∀xϕ[b/x ] which guarantees the satisfaction of the
language condition. Provability conditions are satisfied by applications of
(⇒ ∀) to Γ1 ⇒ ∆1, ϕ (correct since b is only in ϕ) and (∀ ⇒) to ϕ, Γ2 ⇒ ∆2.

We could equally well consider an arbitrary partition of the premiss with b = b

belonging to (Γ2,∆2) and an interpolant ϕ with the same result, i.e. the

interpolant for the conclusion being either ϕ or ∃xϕ[b/x ] (if b is in ϕ but not

in Γ2,∆2).
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Interpolation Theorem

Interpolation for GRDD2; the case of (=⇒) and (Str ⇒):

In the case of (=⇒) and (Str ⇒) the situation is even simpler. For
any partition of the conclusion, an interpolant ϕ is inherited from
the respective partition of the premiss. It means that if the
principal formula belongs to the left (right) division, then we take
the same partition of Γ,∆ with all side formulae belonging to the
left (right) division. Note that in this case a1, ..., an are
eigenvariables so it is not possible that any of them belongs to ϕ
and we do not need any quantification on ϕ to satisfy the language
condition.
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Interpolation Theorem

Interpolation for GRDD2, the case of (⇒ ı)

In the case of (⇒ ı), for arbitrary partition, c ≈ ıxϕ is either in the
left or in the right division. In the first case, by the IH we have:

1 ` c ≈ a, Γ1 ⇒ ∆1, ϕ[x/a], ψ1

2 ` ψ1, Γ2 ⇒ ∆2

3 L(ψ1) ⊆ L({c ≈ a, ϕ[x/a]} t Γ1 t∆1) ∩ L(Γ2 t∆2)

4 ` ϕ[x/a], Γ1 ⇒ ∆1, c ≈ a, ψ2

5 ` ψ2, Γ2 ⇒ ∆2

6 L(ψ2) ⊆ L({c ≈ a, ϕ[x/a]} t Γ1 t∆1) ∩ L(Γ2 t∆2)

with ψ1, ψ2 being interpolants of these partitions of the premisses.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



Interpolation Theorem

Interpolation for GRDD2, the case of (⇒ ı)

In the case of (⇒ ı), for arbitrary partition, c ≈ ıxϕ is either in the
left or in the right division.

In the first case, by the IH we have:

1 ` c ≈ a, Γ1 ⇒ ∆1, ϕ[x/a], ψ1

2 ` ψ1, Γ2 ⇒ ∆2

3 L(ψ1) ⊆ L({c ≈ a, ϕ[x/a]} t Γ1 t∆1) ∩ L(Γ2 t∆2)

4 ` ϕ[x/a], Γ1 ⇒ ∆1, c ≈ a, ψ2

5 ` ψ2, Γ2 ⇒ ∆2

6 L(ψ2) ⊆ L({c ≈ a, ϕ[x/a]} t Γ1 t∆1) ∩ L(Γ2 t∆2)

with ψ1, ψ2 being interpolants of these partitions of the premisses.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



Interpolation Theorem

Interpolation for GRDD2, the case of (⇒ ı)

In the case of (⇒ ı), for arbitrary partition, c ≈ ıxϕ is either in the
left or in the right division. In the first case, by the IH we have:

1 ` c ≈ a, Γ1 ⇒ ∆1, ϕ[x/a], ψ1

2 ` ψ1, Γ2 ⇒ ∆2

3 L(ψ1) ⊆ L({c ≈ a, ϕ[x/a]} t Γ1 t∆1) ∩ L(Γ2 t∆2)

4 ` ϕ[x/a], Γ1 ⇒ ∆1, c ≈ a, ψ2

5 ` ψ2, Γ2 ⇒ ∆2

6 L(ψ2) ⊆ L({c ≈ a, ϕ[x/a]} t Γ1 t∆1) ∩ L(Γ2 t∆2)

with ψ1, ψ2 being interpolants of these partitions of the premisses.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



Interpolation Theorem

Interpolation for GRDD2, the case of (⇒ ı)

We obtain the interpolant ψ1 ∨ ψ2 of the conclusion in the left
division since it holds by 1, 4 and 2, 5:

c ≈ a, Γ1 ⇒ ∆1, ϕ[x/a], ψ1 ϕ[x/a], Γ1 ⇒ ∆1, c ≈ a, ψ2
(⇒ ı)

Γ1 ⇒ ∆1, c ≈ ıxϕ,ψ1, ψ2 (⇒ ∨)
Γ1 ⇒ ∆1, c ≈ ıxϕ,ψ1 ∨ ψ2

ψ1, Γ2 ⇒ ∆2 ψ2, Γ2 ⇒ ∆2(∨ ⇒)
ψ1 ∨ ψ2, Γ2 ⇒ ∆2

The language condition
L(ψ1 ∨ ψ2) ⊆ L({c ≈ ıxϕ[x/a]} t Γ1 t∆1) ∩ L(Γ2 t∆2) is
satisfied by 3, 4 and the fact that a is an eigenvariable.
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Interpolation Theorem

Interpolation for GRDD2, the case of (⇒ ı)

Let c ≈ ıxϕ be in the right division of arbitrary partition, then by
the IH we have:

1 ` Γ1 ⇒ ∆1, ψ1

2 ` ψ1, c ≈ a, Γ2 ⇒ ∆2, ϕ[x/a]

3 L(ψ1) ⊆ L(Γ1 t∆1) ∩ L({c ≈ a, ϕ[x/a]} t Γ2 t∆2)

4 ` Γ1 ⇒ ∆1, ψ2

5 ` ψ2, ϕ[x/a], Γ2 ⇒ ∆2, c ≈ a

6 L(ψ2) ⊆ L(Γ1 t∆1) ∩ L({c ≈ a, ϕ[x/a]} t Γ2 t∆2)

and the interpolant for the conclusion is ψ1 ∧ ψ2 by symmetric
argument.
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Interpolation Theorem

Interpolation for GRDD2, the case of (ı⇒)

The situation with computing an interpolant for (ı⇒) is similar,
i.e. with interpolants being basically either ψ1 ∨ ψ2 or ψ1 ∧ ψ2, but
with an important proviso. Since b is an arbitrary parameter it is
possible, in case of the left division of the principal formula, that b
is in ψ1 ∨ ψ2 but not in Γ1,∆1. Then the interpolant for the
conclusion must be ∀x(ψ1 ∨ ψ2)[b/x ]. Similarly, in case of the
right division, if b occurs in ψ1 ∧ ψ2 but not in Γ2,∆2, then it has
the form ∃x(ψ1 ∧ ψ2)[b/x ]. All other details of the reasoning
remain the same.
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Interpolation Theorem

Interpolation for GRDD2, the case of (⇒=):

In case of the left division, by the IH we have:

1 ` Γ1 ⇒ ∆1, b1 = d1, ϕ1

2 ` ϕ1, Γ2 ⇒ ∆2

3 L(ϕ1) ⊆ L({b1 = d1} t Γ1 t∆1) ∩ L(Γ2 t∆2)

4 ` Γ1 ⇒ ∆1, b2 = d2, ϕ2

5 ` ϕ2, Γ2 ⇒ ∆2

6 L(ϕ2) ⊆ L({b2 = d2} t Γ1 t∆1) ∩ L(Γ2 t∆2)

7 ` Γ1 ⇒ ∆1, b1 = b2, ϕ3

8 ` ϕ3, Γ2 ⇒ ∆2

9 L(ϕ3) ⊆ L({b1 = b2} t Γ1 t∆1) ∩ L(Γ2 t∆2)
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Interpolation Theorem

Interpolation for GRDD2, the case of (⇒=):

Either b1, b2 ∈ L(Γ1 t∆1) or not.
Assume the former, then the interpolant is ϕ1 ∨ ϕ2 ∨ ϕ3. The following proofs justify
provability conditions on the basis of 1, 4, 7, and 2, 5, 8:

Γ1 ⇒ ∆1, b1 = d1, ϕ1 Γ1 ⇒ ∆1, b2 = d2, ϕ2 Γ1 ⇒ ∆1, b1 = b2, ϕ3
(⇒=)

Γ1 ⇒ ∆1, d1 = d2, ϕ1, ϕ2, ϕ3
(⇒ ∨)

Γ1 ⇒ ∆1, d1 = d2, ϕ1 ∨ ϕ2 ∨ ϕ3

ϕ1, Γ2 ⇒ ∆2 ϕ2, Γ2 ⇒ ∆2
(∨ ⇒)

ϕ1 ∨ ϕ2, Γ2 ⇒ ∆2 ϕ3, Γ2 ⇒ ∆2
(∨ ⇒)

ϕ1 ∨ ϕ2 ∨ ϕ3, Γ2 ⇒ ∆2

L(ϕ1 ∨ ϕ2 ∨ ϕ3) ⊆ L({d1 = d2} t Γ1 t∆1) ∩ L(Γ2 t∆2) follows from 3, 6, 9.

In case some of b1, b2 (or both) are not present in Γ1,∆1 but occur in interpolants of

premisses, an additional quantification is required. Accordingly interpolants for the

conclusion should have the form: ∀x(ϕ1 ∨ ϕ2 ∨ ϕ3)[x/b1] or ∀x(ϕ1 ∨ ϕ2 ∨ ϕ3)[x/b2]

or ∀xy(ϕ1 ∨ ϕ2 ∨ ϕ3)[x/b1, y/b2].
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Interpolation Theorem

Interpolation for GRDD2, the case of (⇒=):

By the symmetric argument in the case of the right division,
interpolants computed on the basis of three interpolants of the
premisses have one of the following forms:
ϕ1 ∧ ϕ2 ∧ ϕ3 or
∃x(ϕ1 ∧ ϕ2 ∧ ϕ3)[x/b1] or
∃x(ϕ1 ∧ ϕ2 ∧ ϕ3)[x/b2] or
∃xy(ϕ1 ∧ ϕ2 ∧ ϕ3)[x/b1, y/b2].
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Interpolation Theorem

Interpolation for GRDD2, the case of (⇒ Str):

There is nothing essentially new in the procedure of computing
interpolants for the conclusion of (⇒ Str). For n different
descriptions in the principal formula we have, by the IH, n + 1
interpolants for arbitrary partitions of the premisses. Therefore, in
case of the left division our interpolant obtains one of the form
ψ1∨. . . ψn+1, . . . ,∀x1 . . . xn+1(ψ1∨. . . ψn+1)[b1/x1, . . . , bn+1/xn+1]
depending on the occurrences of bi in Γ1,∆1 and interpolants.
Dually, in case of the right division, suitable interpolants are
conjunctions of ψ1, . . . , ψn+1, possibly existentially quantified.
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Interpolation Theorem

Interpolation for GRDD2, the case of (E ) and (L):

In both rules there are two principal formulae, thus there are four possible classes of
partitions of the conclusion. For (E) they are:

(a) (c = b1, c = b2, Γ1,∆1), (Γ2,∆2)

(b) (Γ1,∆1), (c = b1, c = b2, Γ2,∆2)

(c) (c = b1, Γ1,∆1), (c = b2, Γ2,∆2)
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Interpolation Theorem

Interpolation for GRDD2, the case of (E )

By symmetric argument but on the basis of 2.1., 2.2. and 2.3. we prove that in the
case (b) the interpolant is also inherited from the respective partition of the premiss.
Consider the case (c). By the IH, 1.1., 1.2., 1.3 hold and either b2 ∈ L(Γ1 t∆1) or
not. Assume the former, then the interpolant is c = b2 → ϕ and the provability
conditions are satisfied by the following arguments on the basis of 1.1. and 1.2.:

b1 = b2, Γ1 ⇒ ∆1, ϕ
(E)

c = b1, c = b2, Γ1 ⇒ ∆1, ϕ
(⇒→)

c = b1, Γ1 ⇒ ∆1, c = b2 → ϕ

c = b2, Γ2 ⇒ ∆2, c = b2 ϕ, Γ2 ⇒ ∆2
(→⇒)

c = b2 → ϕ, c = b2, Γ2 ⇒ ∆2

Note that L(c = b2 → ϕ) ⊆ L({c = b1} t Γ1 t∆1) ∩ L({c = b2} t Γ2 t∆2) follows
by 1.3. and the fact that c is in both parts and b2 as well by the assumption.

Let b2 /∈ L(Γ1 t∆1). If b2 is not in ϕ keep the interpolant intact, but if b2 occurs in

ϕ, it has the form ∀x(c = x → ϕ[b2/x]). Provability conditions are satisfied by the

application of (⇒ ∀) to the interpolant in the first proof figure (correct since b2 occurs

only in the interpolant by assumption) and by (∀ ⇒) in the second.
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Interpolation Theorem

Interpolation for GRDD2, the case of (E )

Now consider the fourth case, i.e. (d). By the IH, 2.1., 2.2., 2.3. hold and again,
either b2 ∈ L(Γ2 t∆2) or not. In the first case the interpolant is ϕ ∧ c = b2 and in
the second ∃x(ϕ[b2/x] ∧ c = x) (provided that b2 is also in ϕ). The respective proof
figures are the following:

Γ1 ⇒ ∆1, ϕ c = b2, Γ1 ⇒ ∆1, c = b2
(⇒ ∧)

c = b2, Γ1 ⇒ ∆1, ϕ ∧ c = b2
(⇒ ∃)

c = b2, Γ1 ⇒ ∆1, ∃x(ϕ[b2/x] ∧ c = x)

ϕ, b1 = b2, Γ2 ⇒ ∆2
(E)

ϕ, c = b1, c = b2, Γ2 ⇒ ∆2
(∧ ⇒)

ϕ ∧ c = b2, c = b1, Γ2 ⇒ ∆2
(∃ ⇒)

∃x(ϕ[b2/x] ∧ c = x), c = b1, Γ2 ⇒ ∆2

with the last applications of rules for ∃ not required if b2 ∈ L(Γ2 t∆2) or does not
occur in ϕ.

In the latter case, i.e. if b2 /∈ L(Γ2 t∆2) but b2 occurs in ϕ, the quantification of b2

is necessary to satisfy the language condition.
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Interpolation Theorem

Interpolation for GRDD2, the case of (L)

In the case of (L) the situation is similar but simpler. Again there are four
possible classes of partitions of the conclusion:

(a) (c = b, ϕ[x/c], Γ1,∆1), (Γ2,∆2)

(b) (Γ1,∆1), (c = b, ϕ[x/c], Γ2,∆2)

(c) (c = b, Γ1,∆1), (ϕ[x/c], Γ2,∆2)

(d) (ϕ[x/c], Γ1,∆1), (c = b, Γ2,∆2).

and by the IH we have:

1.1. ` ϕ[x/b], Γ1 ⇒ ∆1, ψ

1.2. ` ψ, Γ2 ⇒ ∆2

1.3. L(ψ) ⊆ L({ϕ[x/b]} t Γ1 t∆1) ∩ L(Γ2 t∆2)

and

2.1. ` Γ1 ⇒ ∆1, ψ

2.2. ` ψ,ϕ[x/b], Γ2 ⇒ ∆2

2.3. L(ψ) ⊆ L(Γ1 t∆1) ∩ L({ϕ[x/b]} t Γ2 t∆2)
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possible classes of partitions of the conclusion:

(a) (c = b, ϕ[x/c], Γ1,∆1), (Γ2,∆2)

(b) (Γ1,∆1), (c = b, ϕ[x/c], Γ2,∆2)

(c) (c = b, Γ1,∆1), (ϕ[x/c], Γ2,∆2)

(d) (ϕ[x/c], Γ1,∆1), (c = b, Γ2,∆2).

and by the IH we have:

1.1. ` ϕ[x/b], Γ1 ⇒ ∆1, ψ

1.2. ` ψ, Γ2 ⇒ ∆2

1.3. L(ψ) ⊆ L({ϕ[x/b]} t Γ1 t∆1) ∩ L(Γ2 t∆2)

and

2.1. ` Γ1 ⇒ ∆1, ψ

2.2. ` ψ,ϕ[x/b], Γ2 ⇒ ∆2

2.3. L(ψ) ⊆ L(Γ1 t∆1) ∩ L({ϕ[x/b]} t Γ2 t∆2)
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Interpolation Theorem

Interpolation for GRDD2, the case of (L)

The cases (a) and (b) allow us to inherit the interpolant ψ from
the premiss. Cases (c) and (d) require similar proofs like for (E ).
In the first case the interpolant is ψ ∧ ϕ[x/c] obtained from 2.1.,
2.2. in the following way:

Γ1 ⇒ ∆1, ψ c = b, Γ1 ⇒ ∆1, c = b
(⇒ ∧)

c = b, Γ1 ⇒ ∆1, ψ ∧ c = b

ψ,ϕ[x/b], Γ2 ⇒ ∆2
(L)

ψ, c = b, ϕ[x/c], Γ2 ⇒ ∆2
(∧ ⇒)

ψ ∧ c = b, ϕ[x/c], Γ2 ⇒ ∆2

In the case (d) we obtain c = b → ψ as an interpolant on the basis
of 1.1., 1.2. In both cases the language condition is satisfied
without further inference steps.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



Interpolation Theorem

Interpolation for GRDD2, the case of (L)

The cases (a) and (b) allow us to inherit the interpolant ψ from
the premiss.

Cases (c) and (d) require similar proofs like for (E ).
In the first case the interpolant is ψ ∧ ϕ[x/c] obtained from 2.1.,
2.2. in the following way:

Γ1 ⇒ ∆1, ψ c = b, Γ1 ⇒ ∆1, c = b
(⇒ ∧)

c = b, Γ1 ⇒ ∆1, ψ ∧ c = b

ψ,ϕ[x/b], Γ2 ⇒ ∆2
(L)

ψ, c = b, ϕ[x/c], Γ2 ⇒ ∆2
(∧ ⇒)

ψ ∧ c = b, ϕ[x/c], Γ2 ⇒ ∆2

In the case (d) we obtain c = b → ψ as an interpolant on the basis
of 1.1., 1.2. In both cases the language condition is satisfied
without further inference steps.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



Interpolation Theorem

Interpolation for GRDD2, the case of (L)

The cases (a) and (b) allow us to inherit the interpolant ψ from
the premiss. Cases (c) and (d) require similar proofs like for (E ).

In the first case the interpolant is ψ ∧ ϕ[x/c] obtained from 2.1.,
2.2. in the following way:

Γ1 ⇒ ∆1, ψ c = b, Γ1 ⇒ ∆1, c = b
(⇒ ∧)

c = b, Γ1 ⇒ ∆1, ψ ∧ c = b

ψ,ϕ[x/b], Γ2 ⇒ ∆2
(L)

ψ, c = b, ϕ[x/c], Γ2 ⇒ ∆2
(∧ ⇒)

ψ ∧ c = b, ϕ[x/c], Γ2 ⇒ ∆2

In the case (d) we obtain c = b → ψ as an interpolant on the basis
of 1.1., 1.2. In both cases the language condition is satisfied
without further inference steps.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



Interpolation Theorem

Interpolation for GRDD2, the case of (L)

The cases (a) and (b) allow us to inherit the interpolant ψ from
the premiss. Cases (c) and (d) require similar proofs like for (E ).
In the first case the interpolant is ψ ∧ ϕ[x/c] obtained from 2.1.,
2.2. in the following way:

Γ1 ⇒ ∆1, ψ c = b, Γ1 ⇒ ∆1, c = b
(⇒ ∧)

c = b, Γ1 ⇒ ∆1, ψ ∧ c = b

ψ,ϕ[x/b], Γ2 ⇒ ∆2
(L)

ψ, c = b, ϕ[x/c], Γ2 ⇒ ∆2
(∧ ⇒)

ψ ∧ c = b, ϕ[x/c], Γ2 ⇒ ∆2

In the case (d) we obtain c = b → ψ as an interpolant on the basis
of 1.1., 1.2. In both cases the language condition is satisfied
without further inference steps.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



Interpolation Theorem

Interpolation for GRDD2, the case of (L)

The cases (a) and (b) allow us to inherit the interpolant ψ from
the premiss. Cases (c) and (d) require similar proofs like for (E ).
In the first case the interpolant is ψ ∧ ϕ[x/c] obtained from 2.1.,
2.2. in the following way:

Γ1 ⇒ ∆1, ψ c = b, Γ1 ⇒ ∆1, c = b
(⇒ ∧)

c = b, Γ1 ⇒ ∆1, ψ ∧ c = b

ψ,ϕ[x/b], Γ2 ⇒ ∆2
(L)

ψ, c = b, ϕ[x/c], Γ2 ⇒ ∆2
(∧ ⇒)

ψ ∧ c = b, ϕ[x/c], Γ2 ⇒ ∆2

In the case (d) we obtain c = b → ψ as an interpolant on the basis
of 1.1., 1.2.

In both cases the language condition is satisfied
without further inference steps.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



Interpolation Theorem

Interpolation for GRDD2, the case of (L)

The cases (a) and (b) allow us to inherit the interpolant ψ from
the premiss. Cases (c) and (d) require similar proofs like for (E ).
In the first case the interpolant is ψ ∧ ϕ[x/c] obtained from 2.1.,
2.2. in the following way:

Γ1 ⇒ ∆1, ψ c = b, Γ1 ⇒ ∆1, c = b
(⇒ ∧)

c = b, Γ1 ⇒ ∆1, ψ ∧ c = b

ψ,ϕ[x/b], Γ2 ⇒ ∆2
(L)

ψ, c = b, ϕ[x/c], Γ2 ⇒ ∆2
(∧ ⇒)

ψ ∧ c = b, ϕ[x/c], Γ2 ⇒ ∆2

In the case (d) we obtain c = b → ψ as an interpolant on the basis
of 1.1., 1.2. In both cases the language condition is satisfied
without further inference steps.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions



Funded by the European Union (ERC, ExtenDD, project number:
101054714). Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the
European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible
for them.

Andrzej Indrzejczak
Constructive Proof of the Craig Interpolation Theorem for Russellian Logic of Definite Descriptions


