Bulletin of the Section of Logic Volume 19/2 (1990), pp. 36–38 reedition 2005 [original edition, pp. 36–38]

Wolfgang Rautenberg

COMMON LOGIC OF BINARY CONNECTIVES HAS FINITE MAXIMALITY DEGREE (Preliminary report)

Let F_p be a set of all properly binary Boolean functions $f: 2^2 \longrightarrow 2$, i.e., f depends on both arguments. Of the 16 binary truth functions 10 belongs to F_p , namely $\vee, \rightarrow, \leftrightarrow$, \leftarrow (reverse implication), \uparrow (Sheffer function) and the duals of these. For $F \subseteq F_p$ let \vdash_F denote the common logic of the $f \in F$ in the propositional language with one binary function symbol, $\vdash_F = \bigcap_{f \in F} \models_{2^f}$, where 2^f denotes the 2-element matrix ((2, f), 1). A study of \vdash_F is useful for various purposes, e.g. for information processing, see [3]. \vdash_F axiomatizes the common sequential rules of the $f \in F$. It needs not to have tautologies but this is a minor point. Particularly interesting is the question how ambiguous \vdash_F actually is, i.e., how much information in form of additional rules needs a system of information processing dealing with \vdash_F in order to identify a connective $f \in F$. This clearly amounts to an analysis of the strenghtenings $\vdash \supset \vdash_F$. Our main result is

THEOREM 1. \vdash_{F_p} (and hence \vdash_F for each $F \subseteq F_p$) has finitely many strengthenings only. All these are determined by finitely many finite matrices.

In other words, \vdash_{F_p} has finite degree of maximality (see [4] for basic notions). \vdash_{F_p} has a huge number of strenghtenings. Presently we only know that its number is less than 10^{45} . However, it has precisely 36 maximal

 $^{^1}$ A logic is here a structural consequence relation denoted by \vdash or a similar symbol \vdash is non-trivial if not $\alpha \vdash \beta$ for all formulas α, β . We omit the improper binary truth functions from our consideration because they are less interesting and cause some additional technical problems.

(nontrivial) strengthenings, including the \models_{2^f} for $f \in F_p$. The remaining 26 are 2^k -valued, $2 \le k \le 5$. For $|F| \le 4$ the maximality degree of \vdash_F is relatively small and can be computed by hand.

Theorem 1 easily follows from Theorem 2 and the Lemma below. SK, PK denote the class of submatrices and of direct products of members of a class K of matrices, respectively. $\mathbf{t0}$ and $\mathbf{t1}$ denote the 1-element matrices whose element is designated and not designated, respectively. $\mathbf{K} \neq \emptyset$ implies $\mathbf{t1} \in PK$ ($\mathbf{t1}$ appears as the power of some $\mathcal{A} \in K$ with the empty index set). If \mathbf{K}, \mathbf{M} are classes of matrices or single matrices we write $\mathbf{M} \equiv \mathbf{K}$ for $\models_{\mathbf{M}} = \models_{\mathbf{K}}$. Clearly $\mathbf{K} \cup \{\mathbf{t1}\} \equiv \mathbf{K}$ but $\mathbf{K} \cup \{\mathbf{t0}\} \equiv \mathbf{K}$ only if $\models_{\mathbf{K}}$ has no tautologies. A matrix \mathcal{A} is trivial if either $\mathcal{A} \equiv \mathbf{t0}$ or $\mathcal{A} \equiv \mathbf{t1}$. Call \mathbf{K} closed if for each nontrivial $\mathcal{A} \in SPK$ there is some $\mathbf{M}_{\mathcal{A}} \subseteq \mathbf{K}$ with $\mathcal{A} \equiv \mathbf{M}_{\mathcal{A}}$. If $\vdash = \models_{\mathbf{K}}$ for some closed \mathbf{K} then \mathbf{K} is said to be a closed semantics for \vdash .

LEMMA ([3]). \vdash has finite degree of maximality iff \vdash has a closed semantics \mathbf{M}, \mathbf{M} finite. If $|\mathbf{M}| = n$ then \vdash has maximality degree $< 2^{n+1}$.

The proof follows essentialy from a well-known result of [4] which implies that **K** is closed iff each $\vdash' \supseteq \models_{\mathbf{K}}$ has a representation $\vdash' = \models_{\mathbf{K}'}$ for some $\mathbf{K}' \subseteq \mathbf{K} \cup \{\mathbf{t0}\}$.

Let $\times \mathbf{M}$ denote the direct product of all members of a set \mathbf{M} of matrices ($\times \emptyset = \mathbf{t1}$ and $\times \{\mathcal{A}\} = \mathcal{A}$). Put $P^*\mathbf{K} = \{\times \mathbf{M} : \mathbf{M} \subseteq \mathbf{K}\}$. Clearly, $|P^*\mathbf{K}| = 2^n$ provided $|\mathbf{K}| = n$.

THEOREM 2. For each $F \subseteq F_p$, $P^*\{2^f : f \in F\}$ is a closed semantics for \vdash_F .

The proof of Theorem 2 which generalizes the results from [3] is essentially based on the fact that \rightarrow , \leftarrow , \leftarrow , \uparrow are independent in the sense of [1] and that the variety **V** generated by the grupoids $(2, \rightarrow)$, $(2, \leftarrow)$, $(2, \leftarrow)$, $(2, \uparrow)$ is strongly irregular, i.e. there is a term $\sigma(x, y)$ such that in **V** holds the equation $\sigma(x, y) = x$ ([2, Example 1.7]).

The maximality degree of \vdash_F strongly grows with |F| but essentially depends also on the composition of F. E.g., for |F|=2 it is ≤ 10 and this bound is realized for $\{\uparrow,\downarrow\}$ (\downarrow the dual of \uparrow) as easily follows from Theorem 2. On the other hand in many cases of $F:=\{f,g\},\models_{2^f}$ and \models_{2^g} are the only proper nontrivial strenghtenings of \vdash_F . An example is $F:=\{\rightarrow,\leftrightarrow\}$. In this case $\{2^{\rightarrow},2^{\leftrightarrow}\}$ is already closed because $2^{\rightarrow}\times2^{\leftrightarrow}\equiv\{2^{\rightarrow},2^{\leftrightarrow}\}$. Since

each $\vdash \supseteq \vdash_F$ has tautologies, $\models_{2} \multimap$ and $\models_{2} \multimap$ are indeed the only proper nontrivial strenghtenings of \vdash_F . Call $F \subseteq F_P$ ($|F| \ge 2$) nice whenever $\{2^f : f \in F\}$ is already closed, as in the last example. For a nice F, the $f \in F$ have a maximum of common rules, or, the calculus \vdash_F is ambiguous to minimal extend. In particular, the only maximal strenghtenings of \vdash_F are the \models_f for $f \in F$. From Theorem 2 it easily follows that F is nice if and only if F consists of some or all of the familiar connectives $\land, \lor, \rightarrow, \leftrightarrow$ and \leftarrow which is essentially the same as \rightarrow). E.g., for $F_1 = \{\land, \lor, \rightarrow\}$, the favoured system of binary connectives, \vdash_{F_1} has 7 proper nontrivial strenghtenings only. Consider $F_2 = \{\land, +, \rightarrow\}$, i.e. "or" is replaced by "either-or". \vdash_{F_2} has nearly twice as many strenghtenings as has \vdash_{F_1} which might explain to some extend the preference of F_1 .

References

- [1] G. Grätzer, H. Lakser and J. Płonka, *Joins and direct products of equational classes*, Canadian Mathematical Bulletin, vol. 12 (1969), pp. 741–744.
- [2] W. Rautenberg, Axiomatizing logics of algebraic matrice varieties, to appear in **Studia Logica**.
- [3] W. Rautenberg, Common logic of 2-valued semigroup connectives, submitted to Zeitschrift für Mathematische Logik und Grundlagen der Mathematik.
- [4] R. Wójcicki, **Theory of Logical Calculi**, Kluwer, Dordrecht 1988.