Piotr Łukowski

INTUITIONISTIC SENTENTIAL CALCULUS WITH CLASSICAL IDENTITY

The aim of the present note is to show how the semantics for ISCI given in [1] may be adapted for the case of intuitionistic sentential logic with the classical connective of identity.

1. Semantics

Where (X, \leq) is a nonempty partially ordered set and, for each $x \in X$, $\mathcal{A}_x = \{A_x, -, \cap, \cup, \Rightarrow, \Leftrightarrow, \circ\}$ an algebra similar to the SCI-language $\mathcal{L} = (L, \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow, \equiv), \emptyset \neq D_x \subset A_x$, we consider the class of matrices:

$$M_x = \{ (\mathcal{A}_x, D_x) : x \in X \}.$$

We assume that $Av_{CI}(M_x)$ is the set of all $h \in \Pi\{Hom(\mathcal{L}, \mathcal{A}_x) : x \in X\}$ which satisfies the conditions:

- (i) if $\Pi_x(h)(\alpha) \in D_x$, then $\forall_{y \geq x} \Pi_y(h)(\alpha) \in D_y$,
- $(1) -\Pi_x(h)(\alpha) \in D_x \text{ iff } \forall_{y \ge x} \Pi_y(h)(\alpha) \notin D_y,$
- (2) $\Pi_x(h)(\alpha) \cap \Pi_x(h)(\beta) \in D_x$ iff $\Pi_x(h)(\alpha) \in D_x$ and $\Pi_x(h)(\beta) \in D_x$,
- (3) $\Pi_x(h)(\alpha) \cup \Pi_x(h)(\beta) \in D_x$ iff $\Pi_x(h)(\alpha) \in D_x$ or $\Pi_x(h)(\beta) \in D_x$,
- $(4) \Pi_x(h)(\alpha) \stackrel{.}{\Rightarrow} \Pi_x(h)(\beta) \in D_x, \text{ iff } \forall_{y \geq x} (\Pi_y(h)(\alpha) \notin D_y \text{ or } \Pi_y(h)(\beta) \in D_y),$
- $(5) \Pi_x(h)(\alpha) \Leftrightarrow \Pi_x(h)(\beta) \in D_x \text{ iff } \forall_{y \geq x} ((\Pi_y(h)(\alpha) \in D_y \text{ and } \Pi_y(h)(\beta) \in D_y) \text{ or } (\Pi_y(h)(\alpha) \not\in D_y \text{ and } \Pi_y(h)(\beta) \not\in D_y)),$
- (6') $\Pi_x(h)(\alpha) \circ \Pi_x(h)(\beta) \in D_x$ iff $\forall_{y \in X} \Pi_x(h)(\alpha) = \Pi_y(h)(\beta)$, and additionally if α is an identity (i.e. the main connective of α is " \equiv ")
 - (i') $\Pi_x(h)(\alpha) \in D_x$ iff $\forall_{y \in X} \Pi_y(h)(\alpha) \in D_y$

148 Piotr Łukowski

 $(\Pi_x(h) \text{ is the } x\text{-coordinate of } h \in \Pi Hom\{\mathcal{L}, \mathcal{A}_x): x \in X\}).$

COROLLARY. According to (i'), for every α being an identity, the conditions (1) and (4) reduce at every $x \in X$ to their classical counterparts:

(1') $-\Pi_x(h)(\alpha) \in D_x$ iff $\Pi_x(h)(\alpha) \notin D_x$,

(4') $\Pi_x(h)(\alpha) \stackrel{.}{\Rightarrow} \Pi_x(h)(\beta) \in D_x$ iff $(\Pi_x(h)(\alpha) \notin D_x$ or $\Pi_x(h)(\beta) \in D_x$).

The same applies to (5) when α, β appearing there are identities.

With each M_X as above we associate the operation $C_{M_X}^{CI}$ of "matrix-like" consequence (cf. [1] p. 95).

DEFINITION. Let $\alpha \in L, B \subseteq L$. $\alpha \in C^{CI}_{M_X}(B)$ iff $\forall_{h \in Av_{CI}(M_X)} \forall_{x \in X}$ (if $\Pi_x(h)(B) \subseteq D_x$, then $\Pi_x(h)(\alpha) \in D_x$).

2. Axiom set and completeness

As the axiom set for $ISCI_{CI}$, i.e. the intuitionistic sentential calculus with the classical identity, we take the axiom set for ISCI ([1]) enlarged with all formulas

$$EM$$
 $\alpha \vee \neg \alpha$

where α is identity.

We define $ISCI_{CI}$ -consequence operation. $\alpha \in C_{CI}(B)$ iff α is derivable from the axiom set for $ISCI_{CI}$ and set B through the Detachment Rule.

Completeness Theorem. For any $\alpha \in L$ and $B \subseteq L$ the following conditions are equivalent:

(*)
$$\alpha \in C_{CI}(B)$$

(**) for each class of matrices M_X $\alpha \in C_{M_X}^{CI}(B)$.

PROOF. (an outline of (*) \Rightarrow (**)). Assume that for some $\alpha \in L$ and $B \subseteq L$ $\alpha \notin C_{CI}(B)$. Then, by Lindenbaum's Lemma there exists a relatively maximal $ISCI_{CI}$ -theory T_0 such that $C_{CI}(B) \subseteq T_0$ and $\alpha \notin T_0$. We take the class K of all relatively maximal $ISCI_{CI}$ theories which have the same set of identities as T_0 . Subsequently, for every $T \in K$ we define \sim_T putting

$$\alpha \sim_T \beta \text{ iff } \alpha \equiv \beta \in T$$
,

for $\alpha, \beta \in L$, and consider

$$M_K = \{(\mathcal{L}/\sim_T, T/\sim_T) : T \in K\}.$$

Let $h \in \Pi\{Hom(\mathcal{L}, T/\sim_T) : T \in K\}$ be defined as follows:

$$\forall_{T \in K} \forall_{\alpha \in L} \Pi_T(h)(\alpha) = [\alpha]_T.$$

Thus, for any $ISCI_{CI}$ -theory $T \in K$ $\Pi_T(h) : \mathcal{L} \to \mathcal{L}/\sim_T$ is a canonical homomorphism.

To show that $h \in Av_{CI}(M_K)$ we must check that for any $\alpha, \beta \in L$ the conditions (i), (1)-(5), (6') are satisfied; it follows from the construction of class M_K that if α is identity, the condition (i') is satisfied. Accordingly, it is nontrivial to demonstrate that for α -non-identity (1), (4) hold.

Condition (1). Suppose that $-\Pi_T(h)(\alpha) \in T/\sim_T$ and that for some $T' \in K, T \subseteq T', \Pi_{T'}(h)(\alpha) \in T'/\sim_{T'}$. Then $\neg \alpha \in T$. Since $\alpha \in T'$ and $\neg \alpha \in T'$, then T' = L.

Now assume that for any $T'\supseteq T, (T,T'\in K)$ $\Pi_{T'}(h)(\alpha)\not\in T'/\sim_{T'}$ i.e. $\alpha\not\in T'$. Since $\alpha, \neg\alpha\not\in T$, then $C_{CI}(T,\alpha)$ is a consistent $ISCI_{CI}$ -theory. Now, we may show that $C_{CI}(T,\alpha)$ has the same set of identities as T (T is a relatively maximal and for any identity $e,(e\vee \neg e)\in T$). So, there exists relatively maximal $ISCI_{CI}$ -theory $T''\in K$ and $C_{CI}(T,\alpha)\subseteq T''$. A contradiction.

Condition (4). Suppose that $\Pi_T(h)(\alpha) \Rightarrow \Pi_T(h)(\beta) \in T/\sim_T$ and for some $T' \in K, T \subseteq T', \Pi_{T'}(h)(\alpha) \in T'/\sim_{T'}$, and $\Pi_{T'}(h)(\beta) \not\in T'/\sim_{T'}$. Since $(\alpha \Rightarrow \beta), \alpha \in T'$, so $\beta \in T'$. A contradiction. Now assume that for any $T' \supseteq T, (T, T' \in K) \Pi_{T'}(h)(\alpha) \not\in T'/\sim_{T'}$, or $\Pi_{T'}(h)(\beta) \in T'/\sim_{T'}$. Moreover, let $\Pi_T(h)(\alpha) \Rightarrow \Pi_T(h)(\beta) \not\in T/\sim_T$. So $(\alpha \Rightarrow \beta), \alpha \not\in T$, and $\beta \in T$. If $\neg \alpha \in T$ or $\beta \in T$, then since $((\neg \alpha \lor \beta) \Rightarrow (\alpha \Rightarrow \beta)) \in T$ ($\alpha \Rightarrow \beta$) $\in T$. So, assume that $\neg \alpha \not\in T$ and $\beta \not\in T$, then $C_{CI}(T,\alpha)$ is a consistent $ISCI_{CI}$ -theory having the same set of identities as a member of K. Thus, there exists $T'', ISCI_{CI}$ -theory maximal relatively to β such that $T'' \in K$ and $C_{CI}(T,\alpha) \subseteq T''$. A contradiction.

Since $C(B) \subseteq T_0$, $[\beta]_{T_0} \in T_0/\sim_{T_0}$ for any $\beta \in B$. Hence, $\Pi_{T_0}(h)(B) \subseteq T_0/\sim_{T_0}$. Simultaneously, since $\alpha \notin T_0$, $[\alpha]_{T_0} = \Pi_{T_0}(h)(\alpha) \notin T_0/\sim_{T_0}$. So,

150 Piotr Łukowski

there exist $h \in Av_{CI}(M_K)$ and an $ISCI_{CI}$ -theory $T_0 \in K$ such that:

$$\Pi_{T_0}(h)(B) \subseteq T_0/\sim_{T_0}$$
 and $\Pi_{T_0}(h)(\alpha) \not\in T_0/\sim_{T_0}$.

We have shown that $\alpha \notin C_{M_K}^{CI}(B)$. \square

3. Remarks

3.1. It is straightforward that similarly the classical sentential calculus with intuitionistic identity, SCI_{II} may be constructed. To this aim, axiom set for ISCI should be enlarged with all formulas $(\alpha \vee \neg \alpha)$ where α is non-identity). The definition of operation $C^{II}_{M_X}$ of an appropriate "matrix-like" consequence is based on the set of all valuations $h \in \Pi\{Hom(\mathcal{L}, A_x) : x \in X\}$ which satisfy conditions (i), (1)-(5),

(6)
$$\Pi_x(h)(\alpha) \circ \Pi_x(h)(\beta) \in D_x$$
, iff $\Pi_x(h)(\alpha) = \Pi_x(h)(\beta)$,

and (i') for α being non-identity.

3.2. The semantics for ISCI presented in [1] (p. 94, 95) can be adjusted for SCI (i.e. the classical sentential calculus with classical identity). This would be the case if we require X to be a one-element set. Another way to do the same with the semantics for $ISCI_{CI}$ given in Section 1 is replacing (i) with (i'). Then the conditions (1), (4) and (5) become "classical" and (6) will be equivalent to (6').

References

[1] P. Łukowski, *Intuitionistic sentential calculus with identity*, **Bulletin of the Section of Logic** vol. 19 no. 3 (1990).

Department of Logic Lódź University Lódź Poland