Bulletin of the Section of Logic Volume 20/1 (1991), pp. 7–9 reedition 2005 [original edition, pp. 7–9]

Paweł M. Idziak

DECISION PROBLEM FOR FINITE EQUIVALENTIAL ALGEBRAS

By an equivalential algebra we mean any groupoid $\mathcal{A}=(A,\leftrightarrow)$ which can be embedded into a (\leftrightarrow) -reduct of Brouwerian semilattice, where the operation \leftrightarrow is determined by the term $x\leftrightarrow y=(x\to y)\land (y\to x)$. This notion was introduced by J. Kabziński and A. Wroński in [2]. They showed that the class \mathbf{E} of all equivalential algebras is equationally definable by the following identities:

$$(x \leftrightarrow x) \leftrightarrow y = y,$$

$$((x \leftrightarrow y) \leftrightarrow z) \leftrightarrow z = (x \leftrightarrow z) \leftrightarrow (y \leftrightarrow z),$$

$$((x \leftrightarrow y) \leftrightarrow ((x \leftrightarrow z) \leftrightarrow z)) \leftrightarrow ((x \leftrightarrow z) \leftrightarrow z) = x \leftrightarrow y,$$

The variety ${\bf E}$ is congruence permutable and

$$p(x, y, z) = ((x \leftrightarrow y) \leftrightarrow z) \leftrightarrow (((x \leftrightarrow z) \leftrightarrow z) \leftrightarrow x)$$

serves as a Malcev term. Since among the identities in the language (\leftrightarrow) the same are satisfied by \mathbf{E} and \mathbf{BS} (i.e. variety of all Brouwerian semilattices) then any Malcev condition which holds in \mathbf{E} holds also in \mathbf{BS} . However the converse fails to hold. The simplest, but important, example is congruence distributivity. To see this let us only note that among subvarieties of \mathbf{E} there is the smallest non-trivial one, namely the variety \mathbf{E}_2 of Boolean groups which is generated by the two element group and can be axiomatized, relative to \mathbf{E} , by adjoining the associativity law. This immediately gives that there is no non-trivial congruence distributive variety of equivalential algebras. Nevertheless subvarieties of \mathbf{E} form a distributive lattice. Moreover, if for a variety $\mathbf{V} \subseteq \mathbf{BS}$ we define \mathbf{V}^e to be a class of all

8 Paweł M. Idziak

equivalential algebras satisfying all identities of V involving \leftrightarrow as the only operation then we have $\mathbf{E} = \mathbf{B}\mathbf{S}^e$.

Equivalential algebras are subreducts (i.e. subalgebras of reducts) of Brouwerian semilattices. Actually for any subvariety V of BS all algebras from \mathbf{V}^e are subreducts of those from \mathbf{V} , i.e. $\mathbf{V}^e = S(\mathbf{V}^r)$, where \mathbf{V}^r is a class of all reducts of algebras from V. In particular we have $\mathbf{E}_2 = \mathbf{BS}_2^e =$ $S(\mathbf{BS}_2^r)$, where \mathbf{BS}_2 is the smallest non-trivial subvariety of \mathbf{BS} . Actually we have even $\mathbf{E}_2 = \mathbf{B}\mathbf{S}_2^r$. However it is the only non-trivial subvariety of \mathbf{E} with this property. For this reason we consider decision problem separately for all equivalential algebras and for those being reducts of Brouwerian semilattices.

THEOREM 1. For any subvariety V of E the following conditions are equivalent:

- (1) $Th(\mathbf{V}_{fin})$ is decidable.
- (2) $Th(\mathbf{V}_{fin})$ is not hereditarily undecidable.
- (3) $\mathbf{V} \subseteq \mathbf{E}_2$.

Theorem 2. For any subvariety V of BS the following conditions are equivalent:

- Th(V^r_{fin}) is decidable.
 Th(V^r_{fin}) is not hereditarily undecidable.
- (3) V is generated by chains.

From Theorem 1 we get that the only non-trivial variety of equivalential algebras with decidable first order theory is the variety \mathbf{E}_2 of all Boolean groups, a result which one can easily infer from the S. Burris and R. McKenzie [1] characterization of congruence modular varieties with decidable elementary theory.

References

- [1] S. Burris and R. McKenzie, *Decidability and Boolean representations*, **Memoirs of the American Mathematical Society** no. 246, (1981).
- [2] J. K. Kabziński and A. Wroński, *On equivalential algebras*, Proceedings of the 1975 International Symposium on Multiple-Valued Logic, Indiana University, Bloomington, May 13-16, 1975, pp. 419–428.

Department of Logic Jagiellonian University Cracow, Poland