Taneli Huuskonen

SMALL NONISOMORPHIC MODELS CAN BE EQUIVALENT IN LONG GAMES

Consider the following type of formulas:

$$(\forall x_{\alpha} \bigwedge_{i_{\alpha} \in I} \exists y_{\alpha} \bigvee_{j_{\alpha} \in J})_{\alpha < \gamma} \bigwedge \Phi^{\overline{i}, \overline{j}}(\overline{x}, \overline{y}),$$

where γ is an ordinal greater than 0, the index sets I and J are arbitrary, and for all $\bar{i} \in I^{\gamma}$ and $\bar{j} \in J^{\gamma}, \Phi^{\bar{i}\bar{j}}(\overline{x}, \overline{y})$ is a set of atomic or negated atomic formulas with variables in $\{x_{\alpha} | \alpha < \gamma\} \cup \{y_{\alpha} | \alpha < \gamma\}$. The truth of such formula ϕ in a model A is determined by the semantic game, where on round α player \forall first chooses some $x_{\alpha} \in A$ and $i_{\alpha} \in I$, and \exists respond with $y_{\alpha} \in A$ and $j_{\alpha} \in J$. After γ rounds \exists wins to chosen elements x_{α} and y_{α} satisfy all formulas in $\Phi^{\bar{i}\bar{j}}$, where \bar{i} and \bar{j} are the sequences chosen by \forall and \exists , naturally. Then $A \models \phi$ iff \exists has a winning strategy in the semantic game. (In fact, ϕ is a sentence.) Let $V_{\infty\gamma}$ be the language formed by such sentences.

The Ehrenfeucht-Fraïsé-game of length γ between two models A and B is defined as follows: on round α player \forall chooses x_{α} from either model and \exists replies with an element y_{α} from the other model. Let $\{a_{\alpha},b_{\alpha}\}=\{x_{\alpha},y_{\alpha}\}$ be such that $a_{\alpha}\in A$ and $b_{\alpha}\in B$. Then \exists wins the game if either γ rounds have been played, the set $\{(a_{\alpha},b_{\alpha})\}$ is a one-to-one function preserving all relations in the models.

It is easy to prove following known facts:

(i) For any limit ordinal $\gamma > 0$, two models A and B are $V_{\infty k}$ -equivalent iff \exists has a winning strategy in the Ehrenfeucht-Fraïsé-game of length γ between A and B.

106 Taneli Huuskonen

(ii) Two models A and B of cardinality k are $V_{\infty k}$ -equivalent iff they are isomorphic.

Moreover, there are many known constructions of model pairs of cardinality 2^k which are nonisomorphic but $V_{\infty k}$ -equivalent for all $\gamma < k^+$. See [Tu] or [Hu], for instance. The question arises whether there are smaller such pairs of models in $2^k > k^+$.

If $k = \omega$, the question is open. In fact, we do not know whether it is consistent with $ZFC + \neg GH$ that there are two nonisomorphic models A and B of cardinality \aleph_1 such that $A \equiv B(V_{\infty\omega^3})$.

If the consistency of a Mahlo cardinal is assumed, the case $k=\omega_1$ can be solved.

THEOREM 0.1. Assume the consistency of a Mahlo cardinal. Then there is a model of ZFC in which $2^{\aleph_1} = \aleph_3$, and there are two linear orderings A and B of cardinality \aleph_2 such that $A \ncong B$ but $A \equiv B(V_{\infty\gamma})$ for all $\gamma < \omega_2$.

The proof uses a forcing construction from [Mi] and a linear ordering from [NS].

References

- [Hu] T. Huuskonen, Comparing notions of similarity for uncountable models, doctoral dissertation, University of Helsinki, to be published in 1991.
- [Mi] W. Mitchell, Aronszajn trees and the independence of transfer property, Annals of Mathematical Logic, vol. 5 (1972), pp. 21–46.
- [NS] M. Nadel and J. Stavi, $L_{\infty\lambda}$ -equivalence, isomorphism and potential isomorphism, **Trans. Amer. Math. Soc.**, vol. 236 (1978), pp. 51–74.
- [Tu] Heikki Tuuri, Infinitary languages and Ehrenfeucht-Fraïsé-games, doctoral dissertation, University of Helsinki, 1990.