Alexandre A. Ivanow

SOME REMARKS ON DEFINABLE QUANTIFIERS

1. Let $\phi(r)$ be a first-order sentence with relational symbols $r = \langle r_0, \ldots, r_{n-1} \rangle$. For any language L let us define a generalized logic $L(Q_{\phi(r)})$ with the following semantics:

 $M \models Q_{\phi(r)}\psi(r)$ if for some relations R_0, \ldots, R_{n-1} on $M, M \models \phi(R)\&\psi(R)$.

S. Shelah proved that $L(Q_{\phi(r)})$ is bi-interpretable with one of the following logics: second-order logic $L(Q_2)$, permutation logic $L(Q_{1-1})$, monadic logic $L(Q_{mon})$ and usual first-order logic.

We consider the finite axiomatizable theory $T_{\phi(r)}$ with axiom $\phi(R)$. For some natural classes of formulas $\phi(r)$ we describe $T_{\phi(r)}$ where $L(Q_2)$ is not interpretable in $L(Q_{\phi(r)})$.

2. A first-order theory T is said to be monadic stable if its $L(Q_2)$ -theory is not interpretable in its monadic theory. We prove the monadic stability of ω -categorical $\forall \cup \exists$ -axiomatizable theory with trivial closure acl.

Instytut Matematyki Uniwersytet Wrocławski Pl. Grunwaldzki 2/4 Wrocław Poland