Bulletin of the Section of Logic Volume 20:3/4 (1991), pp. 109–109 reedition 2005 [original edition, pp. 109–109]

Roman Kossak

THE ω_1 -LIKE RECURSIVELY SATURATED MODELS OF ARITHMETIC

Every countable structure is determined, up to isomorphism, by its $L_{\infty,\omega}$ theory (Scott's theorem). It is well known that the analogous fact for structures of power λ_1 and the logic L_{∞,ω_1} is not true.

Natural examples of non isomorphic L_{∞,ω_1} -elementarily equivalent structures can be found among ω_1 -like recursively saturated models of PA. In [1] and [2] it is shown that for such structures the expressive power L_{∞,ω_1} is exactly the same as that of $L_{\infty,\omega}$, and a construction of non isomorphic models which are elementarily equivalent in infinitary stationary logic $L_{\infty,\omega_1}(aa)$ is given. The main construction in [2] uses the diamond principle \diamondsuit . An alternative construction in ZFC has been provided by J. F. Schmerl (unpublished). The aim of this sort talk is to discuss some of main ideas behind the above results.

References

- [1] R. Kossak, L_{∞,ω_1} -elementary equivalence of ω_1 -like models of PA, Fundamenta Matematicae, vol. 123 (1984), pp. 123–131.
- [2] R. Kossak, Recursively saturated ω_1 -like models of arithmetic, Notre Dame Journal of Formal Logic, vol. 26 (1985), pp. 413–422.

Mathematical Institute Polish Academy of Sciences Śniadeckich 8; P.O. Box 137 00-950 Warszawa, Poland