Bulletin of the Section of Logic Volume 20:3/4 (1991), pp. 85–86 reedition 2005 [original edition, pp. 85–87]

Xavier Caicedo

HILBERT ϵ -SYMBOL IN THE PRESENCE OF GENERALIZED QUANTIFIERS

So called Hilbert ϵ -symbol transforms a formula $\phi(x)$ in a term $\epsilon\phi(x)$ with the intended meaning: "some x such that $\phi(x)$, if such x exists, arbitrary (or undefined in some renderings) otherwise", see [HB]. It is extensionally determined in the sense that it satisfies the schema:

$$(1) \qquad \forall x(\phi \leftrightarrow \psi) \to (\epsilon x \phi \leftrightarrow \epsilon x \psi)$$

Its natural semantics is given by second order structures (\mathbf{A}, F) with \mathbf{A} a first order structure, $F: P(A) \to A$ being a choice function in the non empty subsets of A, and the interpretation $[\epsilon x \phi(x)]^{\mathbf{A}} = F(\phi(x)^{\mathbf{A}})$, see [CHH].

Although it has played an important role in proof theory (Hilbert's original purpose) and it is utilized for example in Bourbaki's axiomatic set theory [B] under the vest of τ , the ϵ -symbol has not been very much considered in model theory; perhaps because its additional expressive power with respect to first order structures seems null, and it is in fact null in a precise sense we explain below. This changes radically if we allow the ϵ -symbol in languages with generalized quantifiers. Take for example the quantifier:

 $Q_1 E_{xy} \phi(x,y) \equiv$ " ϕ defines an equivalence relation having uncountably many equivalence classes".

It is well known that Q_1E is not definable in $L(Q_1)$; it is not even definable in $L_{\infty\omega}(\mathbf{Thin})$, where \mathbf{Thin} is the class of quantifiers containing all monadic and ordering quantifiers, among others. However:

$$Q_1 E_{xy} \phi(x, y) \equiv eq(\phi) \wedge Q_1 x(x = \epsilon y \phi(x, y)),$$

86 Xavier Caicedo

where $eq(\phi)$ says that ϕ is an equivalence relation. This follows easily from (1) above.

Given a regular Lindström logic L, let L^{ϵ} be the language of L enriched with ϵ , and let ϵL be the extension of L obtained by adding all new Lindström sentences definable by formulae of L^{ϵ} . These must be the ϵ -invariant sentences of L^{ϵ} , those satisfying for any $\mathbf{A}, F, G : (\mathbf{A}, F) \models \phi \Leftrightarrow (\mathbf{A}, G) \models \phi$. It may be shown that ϵL is a regular extension of L, preserving compactness, axiomatizability and Löwenheim and Hanf numbers. A measure of the strength of ϵL is given by the next result where qL is the congruence closure of L, and ΔL is the closure under Δ -interpolation.

Theorem $qL \le \epsilon L \le \Delta L$.

Hence $\epsilon L_{\omega\omega} \equiv L_{\omega\omega}$ and the same is true for any logic satisfying Δ -interpolation. However, after [C]:

COROLLARY. If $L \leq L(\mathbf{Thin})$ is a proper extension of $L_{\omega\omega}$, then ϵL is a proper extension of L.

So, for example: $L(Q_0) < \epsilon L(Q_0) \le L_{\omega_1 CK_{\omega}}, L(Q_{\omega}^{cof}) < \epsilon L(Q_{\omega}^{cof}) \le L(aa)$, etc. To finish with the obvious questions: is $qL = \epsilon L$? is $\epsilon L = \Delta L$?

References

- [HB] D. Hilbert and P. Bernays (1934, 1939) **Grundlagen der Mathematik**, vol 1, 2 Springer Verlag, Berlin.
- [B] N. Bourbaki (1954) Elements des Mathématiques. Libre I (Theorie des ensembles), Cap. I,II. Hermann, Paris.
- [CHH] J. Corcoran, W. S. Hatcher and J. Herring (1972) Variable binding term operators. Zeitschrift für Mathematischen Logik und Grundlagen der Mathematik, vol. 18, pp. 177-186.
- [C] X. Caicedo (1990) Definability properties and the congruence closure, Archive for Math. Logik vol. 30, pp. 231–240.

Department of Mathematics Universidad de Los Andos Apartado awreo 4976 Bogota, Colombia