Bulletin of the Section of Logic Volume 20:3/4 (1991), pp. 143–144 reedition 2005 [original edition, pp. 143–144]

Bogusław Wolniewicz

$\begin{array}{c} \text{A SEQUEL TO} \\ \text{HAWRANEK/ZYGMUNT} \end{array}$

In [1], taking a non-empty-set L, a non-empty collection of its subsets \mathcal{R} , and setting for an $M \subset L$:

$$r(M) = \{ R \in \mathcal{R} : R \cap M \neq \emptyset \}$$

$$\mathcal{B} = \{ B \subset M : r(B) = r(M) \},$$

the authors have shown (cf. their proof of "Proposition 2") that for any $B_0 \in \mathcal{B}$

$$B_0$$
 is minimal in (\mathcal{B}, \subset) iff $\bigwedge_{b \in B_0} \bigvee_{R \in \mathcal{R}} R \cap B_0 = \{b\},$

and claimed this to be answer to the question put forward in [2]. We have a comment on that.

Henceforth take L, as in [2], to be a join-semilattice with unit, and \mathcal{R} – the totality of its maximal ideals ("realizations"). Setting $A \vdash B$ iff $A \subset R \Rightarrow B \cap R \neq \emptyset$, for all $R \in \mathcal{R}$, the relation \vdash is one of *entailment*. Let $A \not\vdash B$ be its negation, and $x \vdash B$ short for $\{x\} \vdash B$. Clearly, for any $B \in \mathcal{B}$:

(2)
$$\bigwedge_{b \in B} \bigvee_{R \in \mathcal{R}} R \cap B = \{b\} \text{ iff } \bigwedge_{b \in B} b \not\vdash (B - \{b\}),$$

which in view (1) yields another criterion of B's minimality in (\mathcal{B}, \subset) .

However, neither (1), nor (2), is an answer to our question. For that was for a criterion as to when a join-semilattice L is such that every \mathcal{B} -like

collection of its subsets contains minimal members – by whatever criterion we come to recognize them.

References

- [1] J. Hawranek, J. Zygmunt, Comments on a question of Wolniewicz's, Bulletin of the Section of Logic vol. 19, no. 4 (1990).
- [2] B. Wolniewicz, A question about Join-Semilattices, Bulletin of the Section of Logic vol. 19, no. 3 (1990).

Institute of Philosophy Warsaw University Poland