Viktor K. Finn

A CRITERION OF FUNCTIONAL COMPLETENESS FOR $\underline{{\cal B}}^3$

It is an abstract of the paper which will appear in Studia Logica, vol. 33.

The study of the class of the functions \underline{B}^3 corresponding to D. A. Bochvar's three-valued logic [1] is subject of the present paper. In [2] V. I. Shestakov noticed that \underline{B}^3 can be embedded in the class of the functions corresponding to Lukasiewicz logic L₃. In [3], [4] the author examined normal forms for the functions belonging to \underline{B}^3 and the axiomatized algebra corresponding to B^3 . We make use here of some results and symbolism from [3].

Following A. V. Kuznecov we consider the closure operation [] determined on the subsets of the set \underline{B}^3 . Let $\underline{K} \subseteq \underline{B}^3$. Then we call $[\underline{K}]$ the closure of the set \underline{K} . [K] comprises all superpositions ([5]) of functions belonging to \underline{K} . The set of functions \underline{K} is called closed if $[\underline{K}] = \underline{K}$; the set of functions $\underline{K} \subseteq \underline{B}^3$ is called pre-complete in \underline{B}^3 provided that $[\underline{K}] \neq \underline{B}^3$ and for any function $F \in \underline{B}^3$ such that $F \neq \underline{K}$, $[\underline{K} \cup \{F\}] = \underline{B}^3$; a set \underline{K} is said to be functionally complete in \underline{B}^3 if $[\underline{K}] = \underline{B}^3$.

Let 0, 1, 2 be the logical values of the logic $B_3/0$ =falsehood/. By $\sim x_1$, $x_1 \cap x_2$, $x_1 \cup x_2$ we denote the functions called: internal negation, internal conjunction, and internal disjunction, respectively [1,3]. Their truth-tables are as follows:

$x_1 \cap x$	2	0	1	2	\sim	$x_1 \cup x_2$			
0		0	1	0	2	0	0	1	2
1		1	1	1	1	1	1	1	1
2		0	1	2	0	2	2	1	2

4 Viktor K. Finn

Let us consider now the function $J_{\alpha}x = \begin{cases} 0, & \text{when } x \neq \alpha \\ 2, & \text{when } x = \alpha \end{cases}$

where $\alpha \in \{0, 1, 2\}$. Let us introduce the following functions of [1]: $\neg x =_{df} J_0 x$, $\downarrow x =_{df} J_1 x$, $\vdash x =_{df} J_2 x$. The functions $\sim x_1$, $\vdash x_1$, $x_1 \cap x_2$ constitute a basis for \underline{B}^3 [1].

Let F be any function from \underline{B}^3 .

Then $F(x_1, \ldots, x_n) = J_{x_i} \cup \ldots \cup J_{x_i} \cup \ldots \cup J_{x_i} \cup \ldots \cup J_{x_i}$ where $0 \le i_k \le n$, and $J_{x_j} = d_f x_j \cap \sim x_j$ (see [3]).

The functions F such that F = F, i.e., k = 0, are called external, and the functions such that k = n are called properly internal, the functions such that 0 < k < n being called non-properly internal (cf. [1], [3]). Obviously, $\underline{B}^3 = \underline{B}^3_{ex} \ \underline{B}^3_{in}$, where \underline{B}^3_{ex} is the set of external functions, and \underline{B}^3_{in} is the set of all internal functions from \underline{B}^3 .

The set of all properly internal functions from \underline{B}^3 is denoted by $\underline{B}_{in,p}^3$, and the set of all non-properly internal functions from \underline{B}^3 is denoted by the symbol $B_{in,imp}^3$.

Let us notice that $\vdash F$ may be presented in the following way: $\vdash F = G_F \cup H_F$ where G_F is the part of J-perfect normal form of F not containing the occurrences of $\downarrow x_j$, and H_F is the part of J-perfect normal form of F every conjunctive member of which contains one occurrence of $\downarrow x_j$ at most

We denote the set of all functions $F \in B_{ex}^3$ such that $G_F = 0$ and $H_F \neq 0$ by \underline{B}_H^3 .

By G_F^* we denote a function homomorphic to the function G_F .

The following 11 sets of functions are pre-complete in \underline{B}^3 .

1-5. Let \underline{B}_x^3 , where x is T_0 , T_2 , S, L, or M be the set of functions $F \in \underline{B}^3$ such that G_F^* belongs to T_0 , T_2 , S, L or M, respectively, (where T_0 , T_2 , S, L, M are pre-complete sets of two-valued functions [6] preserving constant 0, constant 2, self-dual, linear, and monotonic).

6. $\underline{B}_{in}^3 = \{F : \text{there exists } x_i \text{ such that }$

 $F(x_1,\ldots,x_{i-1},1,x_{i+1},\ldots,x_n)=1$

7. Let us introduce the following notation:

 X_F = the set of all those variables x_j of the function $F \in B^3_{in}$ such that $F(x_1, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_n) = 1$.

Let us take into consideration now those functions $F \in \underline{B}_{in,imp}^3$ such that $G_F = V_F \cap K_F$, where $V_F^* = 2$, and K_F such that $K_F^* \neq 0$ and K_F^* and $K_F^* \neq 2$ and $X_F \cap X_{V_F} = \emptyset$ and $X_{K_F} \subseteq X_F$. $X_{K_F} \subset X_F$

Let us put: $\underline{B}_Q^3 = \{F': F' \in \underline{B}_{in,imp}^3 \text{ and } G_F^* = const\}$ $\underline{B}_H^3 = \{H: H \in B_{ex}^3 \text{ and } G_H^* = const\}$ $\underline{B}_\Theta^3 = \{F: F \in B_{in,imp}^3 \text{ and } G_F = V_F \cap K_F \text{ and } K_F^* \neq 2 \text{ and } X_F \cap X_{V_F} = \text{and } X_{K_F} \subseteq X_F\}.$

- $\emptyset \text{ and } X_{K_F} \subseteq X_F\}.$ The set $\underline{B}_{\gamma}^3 = [\underline{B}_{in,p}^3 \cup \underline{B}_Q^3 \cup \underline{B}_H^3 \cup \underline{B}_Q^3]$ is pre-complete in \underline{B}^3 .
 8. Let x_j^* and $-x_j^*$, $j=1,2,\ldots$ be, respectively, the variable and its negation in the sense of two-valued logic. Then $\underline{B}_F^3 = [\underline{B}_{ex}^3 \cup \{F: F \in \underline{B}_{in}^3 \text{ and } G_F^* = const\} \cup \{F': \text{ there exists } x_j \text{ such that } F' = J_{x_j} \cup \vdash F' \text{ and } G_{F'}^* \in \{x_j^3, -x_j^*\}\}$ is a pre-complete set in B^3 .
- $G_{F'}^* \in \{x_j^8, -x_j^*\}\}$ is a pre-complete set in \underline{B}^3 . 9. $\underline{B}_{\cap}^3 = [\underline{B}_{ex}^3 \cup (x_1 \cap x_2) \cup \{F : F \in \underline{B}_{in}^3 \text{ and } G_F^* = 0\}]$ is pre-complete in B^3 .
- 10. $\underline{B}_{\cup}^3 = [\underline{B}_{ex}^3 \cup (x_1 \cap x_2) \cup \{F : F \in \underline{B}_{in}^3 \text{ and } G_F^* = 2\}]$ is pre-complete in \underline{B}^3 .
- 11. $\underline{B}_{in,imp,1}$ is the set of all those functions F which are non-properly internal and which are of the form $F = J_{x_j} \cup \vdash F$. The set $\underline{B}_C^3 = [\underline{B}_{ex}^3 \cup \underline{B}_{in,imp,1}^3]$ is pre-complete in \underline{B}^3 .

THEOREM. A set $\underline{K} \subseteq \underline{B}^3$ is functionally complete in \underline{B}^3 iff \underline{K} is not contained in any of the sets: $\underline{B}_{T_0}, \underline{B}_{T_2}, \underline{B}_S^3, \underline{B}_L^3, \underline{B}_M^3, \underline{B}_{in}^3, \underline{B}_\gamma^3, \underline{B}_F^3, \underline{B}^3, \underline{B}_C^3$.

REMARK 1. In [6] V.I. Shestakov examined various normal forms of the functions belonging to \underline{B}^3_{ex} . It can be proved that: the set of the functions $N\subseteq \underline{B}^3_{ex}$ is functionally complete in \underline{B}^3_{ex} iff N is not contained in the following seven pre-complete sets: $\underline{B}^3_{ex,T_0}, \underline{B}^3_{ex,T_2}, \underline{B}^3_{ex,S}, \underline{B}^3_{ex,L}, \underline{B}^3_{ex,M}, \underline{B}^3_{ex,\neg}, \underline{B}^3_{ex,-}$ where $\underline{B}^3_{ex,\neg} = [\{\neg x_1 \cap \neg x_2\}]$ and $\underline{B}^3_{ex,-} = [\{\bar{x}_1 \cap \bar{x}_2\}]$.

REMARK 2. In [7] S. Halldén considered the three-valued logic C aiming at a systematic study of "nonsense". Defined connectives of the logic C are the functions: $\sim \downarrow x_1, \sim x_1, x_1 \cap x_2$. It is easy to see that $\underline{B}_C^3 \subset \underline{B}_\gamma^3$, where $\underline{B}_C^3 = [\{\sim \downarrow x_1, \sim x_1, x_1 \cap x_2\}]$.

References

[1] D. A. Bochvar, Ob odnom trehznačnom iscislénii i égo priménénii k analizu paradoksov klassicéskogo rassirénnogo funkcional'nogo iscicléniá,

6 Viktor K. Finn

Matématicéskij sbornik, 1938, t. 4, vypusk 2.

[2] V. I. Sestakov, O vzaimootnosenii nékotorych tréhznacnyh logicéskih iscislénij, Uséhi Matématicéskih nauk, 1964, t. 19, vypusk 2 (16).

- [3] V. K. Finn, Ob aksiomatizacii nékotorych tréhznacnyh logik, Naucnotechnicéskaá informaciá, Seriá 2, No. 11, 1971.
- [4] V. K. Finn, **Aksiomatizaciá nékotoryh tréhznacnyh iscislénij vyskazyvanij i ih algébr**, 1972, rukopis' déponirovana v VINTI AN, SSSR, 4471-71 Dep.
- [5] S. V. Yablonskij, Funkcional'nyé postroéniá v k-znacnoj logiké, Trudy matématicéskogo instituta in. V. A. Stéklova, 1958, t. 51.
- [6] V. J. Sestakov, *Ob odnom fragménté iscisléniá D. A. Bocvara*, Informacionnyé voprosy semiotyki, lingvistiki i avtomaticéskogo pérévoda, VINITI, M., 1971, vypusk 1.
 - [7] S. Halldén, The logic of nonsense, Uppsala, 1949.

All-Union Institute of Science and Technical Information, Moscow