Bulletin of the Section of Logic Volume 2/1 (1973), pp. 12–15 reedition 2013 [original edition, pp. 12–17]

Jerzy Kotas

THE AXIOMATIZATION OF S. JAŚKOWSKI'S DISCUSSIVE SYSTEM

S. Jaśkowski in [2] and [3] has determined through interpretation a new logical system D_2 , very interesting in many respects, which he has called a discussive system. L. Dubikajtis and N. C. A. da Costa in [1] gave an infinite axiom set for that system. The present paper aims at demonstrating that D_2 is a finitely axiomatizable. We shall make use of the Lukasiewicz bracketless notation. The symbols K, A, C, N, M and L will denote conjunction, disjunction, material implication, negation, possibility, and necessity, respectively. Logical systems will be treated as the sets of formulae.

In determining the system D_2 Jaśkowski employes the modal system S_5 of Lewis. He enriches the set of logical connectives of the system S_5 with three additional connectives K_d , C_d , and E_d which he calls discussive conjunction, discussive implication, and discussive equivalence, respectively. These logical connectives he defines as follows:

Definition 1. $K_dpq =_{df} KpMq$;

Definition 2. $C_dpq =_{df} CMpq$;

Definition 3. $E_dpq =_{df} K_dC_dpqC_dqp$.

The system D_2 is the least set of formulae α fulfilling the following conditions:

- 10. There are present in α only the signs of propositional variables and the signs K_d , C_d , E_d , A and N;
- 2^0 . The expression $M\alpha_L$, where α_L is the expression obtained from α by eliminating the symbols K_d , C_d , E_d , according to their definitions

1-3, is a thesis of the system S5.

Let the symbols LS5 and M-S5 denote, respectively, the set of all those theses of the system S5 at the beginning of which there is the symbol L, and the set of all formulae of the system S5 which after being preceded by the sign M become theses of the system S5. Since we treat the logical systems as sets of formulae, LS5 and M-S5 are certain logical systems. Making use of C, N and L it is possible to define in a well known way all remaining logical connectives of the system S5; thus considering the systems S5, LS5 and M-S5 we can confine ourselves to the set of formulae where, apart from variables, there are only the signs C, N and L. For the same reason we may put that K_d , C_d , A, N are the only signs of the logical connectives occurring in the formulae of the system D_2 .

Let A be the set consisting of the following formulae:

```
(A_1) LCpCNpq,
```

- (A_2) LCCpqCCqrCpr,
- (A_3) LCCNppp,
- (A_4) LCLpp,
- (A_5) LCLCpqCLpLq,
- (A_6) LCNLpLNLp.

In further considerations we shall employ the following rules of deduction:

```
(R_1): substitution rule;
```

 (R_2) : if α , then $L\alpha$;

 (R_3) : if α , then $L\alpha$;

 (R_4) : if $L\alpha$, then α ;

 (R_5) : if $NLN\alpha$, then α .

The symbol $Cn(A; R_1, ..., R_n)$ denote the set of all formulae which are the consequences of the set A with respect to the rules of deduction $(R_1), ..., (R_n)$.

```
LEMMA 1. Cn(A; R_1, R_2, R_3) = LS5.
```

LEMMA 2.
$$Cn(A; R_1, R_2, R_3, R_4) = S5.$$

LEMMA 3. $Cn(A; R_1, R_2, R_3, R_4, R_5) = M - S5.$

14 Jerzy Kotas

Since from $C\alpha\beta \in M - S5$ and $C\beta\alpha \in M - S5$ it does not follow that $CN\alpha N\beta \in M - S5$, then the material implication C is not in the system M - S5 the implication as meant in [4]. For the same reasons C_d is not an implication as meant above, in the system D_2 . It is easy to prove that the strict implication, denoted here by the symbol C_S , as well as the logical connective I which is defined in the following way:

DEFINITION 4. $Ipq =_{df} NK_dANrrNANpq$ are implications in the system M-S5 and D_2 , respectively, in the sense as determined in [4].

The interpretation i_1 of the system D_2 in the system M-S5, and the interpretation i_2 of the system M-S5 in the system D_2 we determine in the following way:

- I. For any formulae α and β of the system D_2 :
 - i) $i_1(\alpha) = \alpha$, when α is a propositional variable,
 - ii) $i_1(N\alpha) = Ni_1(\alpha)i_1(\beta)$,
 - iii) $i_1(A\alpha\beta) = CNi_1(\alpha)i_1(\beta)$,
 - iv) $i_1(K_d\alpha\beta) = NANi_1(\alpha)LNi_1(\beta)$,
 - v) $i_1(C_d\alpha\beta) = CNLNi_1(\alpha)i_1(\beta);$
- II. For any formulae α and β of the system M-S5:
 - i) $i_2(\alpha) = \alpha$ when α is a propositional variable,
 - ii) $i_2(N\alpha) = Ni_2(\alpha)$,
 - iii) $i_2(C\alpha\beta) = ANi_2(\alpha)i_2(\beta),$
 - iv) $i_2(L\alpha) = NK_dANppNi_2(\alpha)$.

LEMMA 4. $\lceil C_S i_1(Ipq) C_S pq \rceil \in M - S5$ and $\lceil C_S C_S pq i_1(Ipq) \rceil \in M - S5$.

LEMMA 5.
$$\lceil Ii_2(C_Spq)Ipq \rceil \in D_2 \text{ and } \lceil IIpqi_2(C_Spq) \rceil \in D_2.$$

From the Lemmas 4 and 5 it follows that the interpretation i_1 turns the implication I in the strict implication C_S , and the interpretation i_2 turns the implication C_S in I.

LEMMA 6. The interpretations i_1 and i_2 establish the equivalence of the systems D_2 and $M - S_5$.

Because D_2 and $M-S_5$ are equivalent systems, from the notes at the end of [4], from Theorem 4 put in [5], p. 361, and from Lemmas 3 and 6 it follows

Theorem. D_2 is a finitely axiomatizable system.

In the above mentioned Theorem 4 of [5] a method is given which effectively enables to obtain the axioms of a logical system if the axioms of the equivalent logical system are known. Making use of that method we obtain the following

COROLLARY. The formulae $i_2(A_i)$, i = 1, ..., 6, $Ii_2i_1(Fpq)Fpq$, $IFpqi_2i_1(Fpq)$, where instead of the symbol F, symbols K_d , C_d , A should be put in turn, and the rules (R_i, i_2) , i = 1, 2, 3, 4, 5, connected through the interpretation i_2 with the rules (R_i) , i = 1, 2, 3, 4, 5, constitute the complete axiom set of the system D_2 .

References

- [1] N. C. A. da Costa, L. Dubikajtis, Sur la logique discursive de Jaśkowski, Bull. Acad. Pol. Sci. 16 (1968), pp. 551–557.
- [2] S. Jaśkowski, *Propositional calculus for contradictory deductive systems*, **Studia Soc. Scien. Toruniensis** 1 (1948), pp. 57–77.
- [3] S. Jaśkowski, On discussive conjunction in the propositional calculus for contradictory deductive systems, **Studia Soc. Scien. Toruniensis** 1 (1949), pp. 171–172.
- [4] J. Kotas, Logical systems with implications, **Studia Logica** 28 (1971), pp. 101–117.
- [5] J. Kotas, A. Pieczkowski, Allgemeine logische und matematische Theorien, Zeit. Math. Logik Grundlagen Math. 16 (1970), pp. 353–376.

Institute of Mathematics Nicholas Copernicus University Toruń