Bulletin of the Section of Logic Volume 2/1 (1973), pp. 65–69 reedition 2013 [original edition, pp. 65–70]

Andrzej Wroński

ON THE DEGREE OF COMPLETENESS OF POSITIVE LOGIC

We shall use the terminology and notion of our paper "Remarks on intermediate logics..." (this volume, pp. 58–64). A formula α FR is called positive iff the negation sign does not occur in α (allowed are only the connectives \Rightarrow , \wedge and \vee). By PFR we denote the set of all positive formulas and by POS the well-known positive logic (i.e. $INT \cap PFR$, see [5]). The symbol Cp denotes the consequence operation determined by POS, the substitution rule and the detachment rule. We say that $X \subseteq PFR$ is a positive intermediate logic iff $Cp(X) \subseteq X \neq PFR$. It was proved by Jankov [2] that there exists a sequence $\{\alpha_n : n = 1, ...\} \subseteq PFR$ such that $\alpha_n \Rightarrow \alpha_m \notin POS$ iff $m \neq n$. In the direction of strengthening this result we will show that there exists a sequence $\{\pi_n : n = 0, 1, \ldots\} \subseteq PFR$ such that $\pi_n \notin Cp(\{\pi_m : m \neq n\}), n = 0, 1, ...$ The fact above allows us to prove that the degree of completeness of POS is 2^{\aleph_0} (i.e. there exist 2^{\aleph_0} positive intermediate logics) and construct some not finitely approximable, not finitely axiomatizable and undecidable positive intermediate logics (for intermediate logics analogous results where obtained by Jankov [1]. If \mathcal{A} is a pseudo-Boolean algebra then by $Ep(\mathcal{A})$ we denote $E(\mathcal{A}) \cap PFR$. It is well-known that every positive intermediate logic is identical with $Ep(\mathcal{A})$ for some non-degenerate pseudo-Boolean algebra \mathcal{A} and conversely if a pseudo-Boolean algebra \mathcal{A} is non-degenerate then $Ep(\mathcal{A})$ is a positive intermediate logic. By positive embedding (p-embedding) of \mathcal{A} into \mathcal{L} we mean an embedding of the positive reduct of A (i.e. reduct obtained by dropping the pseudocomplement operation $\neg_{\mathcal{A}}$) into the positive reduct of \mathcal{L} . The terms:

p-subalgebra, p-generating set will be used in the analogous way. Let A be finite and strongly compact (i.e. such that in $A - \{\mathbf{1}_A\}$ there exists the

66 Andrzej Wroński

greatest element $\star_{\mathcal{A}}$). Following Jankov [3] for the algebra \mathcal{A} we define the positively characteristic formula $p\chi(\mathcal{A})$ such that:

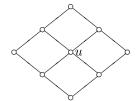
$$p\chi(\mathcal{A}) = (\wedge ((a_x \Rightarrow a_y)) \Leftrightarrow a_x \to_{\mathcal{A}} y : x, y \in A)$$

$$\wedge ((a_x \wedge a_y) \Leftrightarrow a_x \wedge_{\mathcal{A}} y : x, y \in A)$$

$$\wedge ((a_x \vee a_y) \Leftrightarrow a_x \vee_{\mathcal{A}} y : x, y \in A)) \Rightarrow a_{\star_{\mathcal{A}}}$$

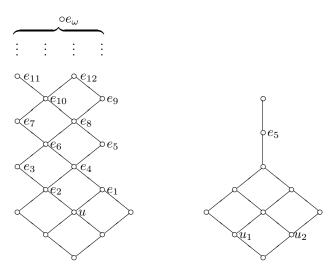
LEMMA 0. (see [3]) Let A be a finite and strongly compact algebra, let \mathcal{L} be an algebra. Then the following conditions are equivalent:

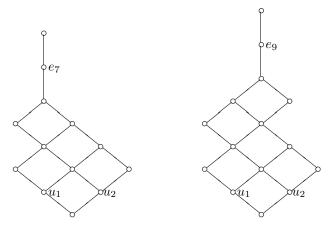
- (i) A is p-embeddable into a quotient algebra of \mathcal{L} .
- (ii) $Ep(\mathcal{L}) \subseteq Ep(\mathcal{A})$,
- (iii) $p\chi(\mathcal{A}) \notin Ep(\mathcal{L})$.



It is easy to observe that the algebra $\mathcal{F}_3 \times \mathcal{F}_3$ (see diagram) is $[u, e_4]$ – associable to the algebra \mathcal{F} . We denote $(\mathcal{F}_3 \times \mathcal{F}_3) \oplus \mathcal{F}[u, e_4]$ by \mathcal{R} and $\mathcal{R}/[e_{2n+5})) \oplus$ by \mathcal{R}_n , $n=0,1,\ldots$

Let us visualize the algebras \mathcal{R} , \mathcal{R}_0 , \mathcal{R}_1 and \mathcal{R}_2 by diagrams.





LEMMA 1. If $n \neq m$ then \mathcal{R}_n cannot be p-embedded into a quotient algebra of \mathcal{R}_m .

Let us denote the positively characteristic formula $p\chi(\mathcal{R}_n)$ by π_n , $n = 0, 1, \ldots$ By Lemma 0 and Lemma 1 we get the following:

Theorem 0. $\pi_n \notin Cp(\{\pi_n : m \neq n\}).$

PROOF. Applying Lemma 0 to the statement of Lemma 1 we get that $\{\pi_m : m \neq n\} \subseteq E_p(\mathcal{R}_n)$. Since by Lemma 0 it follows that $\pi_n \notin E_p(\mathcal{R}_n)$ then the proof is finished. Q.E.D.

THEOREM 1.

- (i) The degree of completeness of POS is 2^{\aleph_0} ,
- (ii) Some positive intermediate logics are not finitely axiomatizable,
- (iii) For every degree of unsolvability there exists a positive intermediate logic of higher or equal degree.

PROOF. Let us denote $Cp(\{\pi_n : n \in I\})$ by $\pi(I)$, $I \subseteq \{0,1,\ldots\}$. By Theorem 0 it follows that $\pi(I)$ is finitely axiomatizable iff I is finite and also that $|\{\pi(I) : I \subseteq \{0,1,\ldots\}\}| = 2^{\aleph_0}$. Since $\{\pi_n : n = 0,1,\ldots\}$ is a recursive subset of PFR then observing that $\pi_n \in \pi(I)$ iff $n \in I$ we know that the degree of unsovability of $\pi(I)$ is higher or equal to that of I. Q.E.D.

68 Andrzej Wroński

REMARK. \mathcal{R}_n is p-generated by $\{u_1, u_2, e_{2n+5}\}$ (see diagram) and therefore one can find a positive formula $\overline{\pi}_n$ with three propositional variables such that $Cp(\overline{\pi}_n) = Cp(\pi_n)$.

Let α and β be positive formulas defined as follows: $\alpha = b \lor (b \Rightarrow (c \lor (c \Rightarrow \lor (d_i \Rightarrow d_j : i, j = 1, 2, 3, i \neq j))))$, $\beta = \alpha \lor \pi_0$ (we require that α and π_0 have no common propositional variable). We will show that no finite algebra separates β from $Ep(\mathcal{R} \oplus \mathcal{R}_0)$ and therefore $Ep(\mathcal{R} \oplus \mathcal{R}_0)$ is not finitely approximable since $\beta \notin Ep(\mathcal{R} \oplus \mathcal{R}_0)$. Let us visualize the algebra $\mathcal{R} \oplus \mathcal{R}_0$ by means of the diagram.

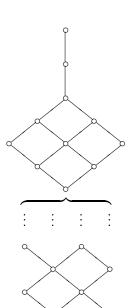
Lemma 2.

- (i) $\beta \notin Ep(\mathcal{R} \oplus \mathcal{R}_0)$,
- (ii) \mathcal{R}_0 cannot be p-embedded into $\mathcal{R} \oplus \mathcal{R}_0/\Phi$ if the filter Φ is non-trivial,
- (iii) If v is a refuting valuation of β in $\mathcal{R} \oplus \mathcal{R}_0$ then the image of the set of propositional variables of β under v p-generates $\mathcal{R} \oplus \mathcal{R}_0$.

THEOREM 2. $Ep(\mathcal{R} \oplus \mathcal{R}_0)$ is not finitely approximable.

PROOF. Suppose that \mathcal{A} is a finite algebra such that $Ep(\mathcal{R}\oplus\mathcal{R}_0)\subseteq Ep(\mathcal{A})$ and $\beta\not\in Ep(\mathcal{A})$. It is easy to see that one can find a strongly compact algebra satisfying such conditions. Therefore by Lemma 0 we get that \mathcal{A} is p-embeddable into $\mathcal{R}\oplus\mathcal{R}_0/\Psi$ for some filter Ψ . Hence $\pi_0\not\in Ep(\mathcal{R}\oplus\mathcal{R}_0/\Psi)$ and applying Lemma 0 we obtain that \mathcal{R}_0 is p-embeddable into $\mathcal{R}\oplus\mathcal{R}_0/\Phi$ for some filter Φ such that $\Psi\subseteq\Phi$. By Lemma 2(ii) we know that the filter Φ must be trivial which implies that \mathcal{A} is p-embeddable into $\mathcal{R}\oplus\mathcal{R}_0$. Thus β can be refuted in a finite p-subalgebra of $\mathcal{R}\oplus\mathcal{R}_0$ which contradicts Lemma 2(iii). Q.E.D.

PROBLEM. Kuznecov, Gerciu [4] used an algebra very similar to $\mathcal{R} \oplus \mathcal{R}_0$ in order to obtain a finitely axiomatizable and not finitely approximable intermediate logic. Is $Ep(\mathcal{R} \oplus \mathcal{R}_0)$ finitely axiomatizable?



References

- [1] V. A. Jankov, Constructing a sequence of strongly independent superintuitionistic propositional calculi, **Dokl. Akad. Nauk SSSR**, 181 (1968), pp. 33–34 = **Soviet Math. Dokl.**, 9 (1968), pp. 806–807.
- [2] V. A. Jankov, Three sequences of formulas with two variables in the positive propositional logic, Izv. Akad. Nauk SSSR, Ser. Mat., 32 (1968), pp. 880–883 (Russian).
- [3] V. A. Jankov, Conjunctively indecomposable formulas in propositional calculi, Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), pp. 18–38 = Math. USSR Izv., 3 (1969), pp. 17–36.
- [4] A. V. Kuznecov, V. Ja Gerčiu, Superintuitionistic logic and finite approximability, **Dokl. Akad. Nauk SSSR**, 195 (1970), pp. 1029–1032 = **Soviet Math. Dokl.**, 11 (1970), pp. 1614–1619.
- [5] H. Rasiowa, R. Sikorski, *The mathematics of metamathematics*, **Monografie Mat.**, Tom 41, PWN, Warsaw, 1963.

Department of Logic Jagiellonian University Cracow