Grzegorz Malinowski

MV_k ALGEBRAS

This is an abstract of the paper that will be published in Studia Logica.

In this paper we introduce the notion of MV_k algebras, which are the algebraic interpretation of Łukasiewicz's logics. MV_k algebras have advantages of k-valued algebras of Łukasiewicz and MV algebras as well. We will use the notion "k-valued algebra of Łukasiewicz" in the sense of the definition 3 from [4] but for this we are going to give the following modification of that definition: the condition M2: $\sigma_i(x) \subset \sigma_{i+1}(x)$ we replace with M2: $\sigma_i(x) \supset \sigma_{i+1}(x)$.

Definition 1. We shall say that the algebra

- (1) $\underline{V}_k = \langle V, +, \cdot, \cup, \cap, -, 0, 1, \sigma_1, \sigma_2, \dots, \sigma_{k-1} \rangle$ $(k \ge 2)$ is an MV_k algebra provided that
- K1. The reduct $\underline{\mathbf{L}}_k = \langle V, \cup, \cap, -, 0, 1, \sigma_1, \sigma_2, \dots, \sigma_{k-1} \rangle$ is the k-valued algebra of Lukasiewicz
 - K2. The reduct $\underline{V}=\langle V,+,\cdot,-,0,1\rangle$ is the MV algebra (see [2]) and $x\cup y=x\cdot \overline{y}+y$
 - $x \cap y = (x + \overline{y}) \cdot y$
- K3. $\sigma_1(x) = (k-1)x + (x \overline{x})$, where $(k-1)x = {}^{df} x + x + \ldots + x(k-1)times$
 - $\begin{array}{ll} K4. & \text{If } x \neq \overline{y}, \text{ then } \sigma_1(x) \cdot \sigma_1(y) \leqslant \sigma_1(x \cdot y + \overline{x} \cdot \overline{y}) \\ K5. & \sigma_i(x) \cdot \sigma_{k-i}(x) \leqslant \sigma_1(x \cdot x) \text{ for any } i \in \{1, 2, \dots, k-1\}. \end{array}$

DEFINITION 2. We shall say that MV_k algebra \underline{V}_k is centered provided that the k-valued algebra of Łukasiewicz $\underline{\mathbb{L}}_k$ is centered i.e. there exists (k-2) elements $a_2, a_3, \ldots, a_{k-1} \in V$ such that the following condition holds:

(2)
$$\sigma_i(a_j) = \begin{cases} 1 & \text{for } 1 \leqslant i < j \\ 0 & \text{for } j \leqslant i \leqslant k - 1. \end{cases}$$

If $M_k=\langle A_k, \to, \vee, \wedge, \neg, \{1\} \rangle$ is the k-valued Łukasiewicz's matrix, then the algebra

(3) $\underline{C}_k = \langle A_k, +, \cdot, \cup, \cap, \neg, 0, 1, \sigma_1, \sigma_2, \dots, \sigma_{k-1} \rangle$ where

$$\begin{array}{ll} x+y=\neg x\to y, & x\cup y=x\vee y \\ x\cdot y=\neg (x\to \neg y), & x\cap y=x\wedge y \end{array}$$

and

$$\sigma_i(\frac{j}{k-1}) = \begin{cases} 1 & \text{for} \quad 1 \leqslant i < j+1 \\ 0 & \text{for} \quad j+1 \leqslant i \leqslant k-1 \end{cases}$$

is the centered MV_k algebra.

LEMMA 1. Each linearly ordered MV_k algebra is isomorphic with the algebra \underline{C}_k .

Definition 3.

- (i) $\emptyset \neq \underline{J} \subseteq V$ is called an ideal of the MV_k algebra V_k iff \underline{J} is an ideal of the MV algebra \underline{V} i.e. provided that
 - (c1) if $x, y \in \underline{J}$, then $x + y \in \underline{J}$,
 - (c2) if $x \leq y$ and $y \in \underline{J}$, then $x \in \underline{J}$ (see [2]).
- (ii) If \underline{J} is an ideal of the MV_k algebra \underline{V}_k , then put $x \approx_{\underline{J}} y$ $(x, y \in V)$ iff $d(x, y) \in \underline{J}$, where $d(x, y) = \overline{x} \cdot y + x \cdot \overline{y}$ $(\approx_{\underline{J}}$ is then the congruence relation on the MV algebra \underline{V} see [2]).

LEMMA 2. For every ideal \underline{J} of the MV_k algebra \underline{V}_k we have $x \in \underline{J}$ iff $\sigma_i(x) \in \underline{J}$ for every $i \in \{1, 2, ..., k-1\}$.

LEMMA 3. The relation $\approx_{\underline{J}}$, where \underline{J} is an ideal of the algebra \underline{V}_k , is the congruence relation on \underline{V}_k .

DEFINITION 4. The ideal \underline{P} of the MV_k algebra \underline{V}_k is called first ideal of this algebra if \underline{P} is the first ideal of the MV algebra i.e. (f1) $\underline{P} \neq V$, (f2) for every $x, y \in V$ either $x \cdot \overline{y} \in \underline{P}$ or $\overline{x} \cdot y \in \underline{P}$.

Lemma 4. (cf. [3]) If \underline{P} is the first ideal of the MV algebra \underline{V} , then $\underline{V}/\underline{P}$ is a linearly ordered MV algebra.

 MV_k Algebras 187

From Lemmas 4 and 1 we obtain the following:

LEMMA 5. If \underline{V}_k is an arbitrary MV_k algebra and \underline{P} is the first ideal of it, then $\underline{V}_k/\underline{P}$ is isomorphic with the MV_z algebra \underline{C}_z $(z \leq k)$. If k is even, then z is even too.

As a particular case of the last lemma we obtain the following:

LEMMA 6. If \underline{V}_k^c is a centered MV_k algebra and \underline{P} is the first ideal of it, then $\underline{V}_k^c/\underline{P}$ is isomorphic with the algebra \underline{C}_k .

For the case given in Lemma 5 we receive the following notation: We write \underline{C}_z^k for MV_z algebra \underline{C}_z ($z \leqslant k$), which is written in the same manner as MV_k algebra (that means that in this structure we find (k-1) endomorphisms not necessarily different, but in the way that the conditions (ii) of Definition 3 from [4] were fulfilled – there are many such representations for the fixed algebra \underline{C}_z and the quotient algebra $\underline{V}_k/\underline{P}$ from Lemma 5 is one them).

C. C. Chang has obtained the following result for MV algebras:

LEMMA 7. Let $\underline{V}^0 = \langle V, +, \cdot, 0, 1 \rangle$ be an arbitrary MV algebra. Then for every $a \in V$ there exist the prime ideal \underline{P}_a such that $a \notin \underline{P}_a$.

From the last lemma and Birkhoff's [1] it follows:

THEOREM 1. (Chang's representation theorem for MV algebras, cf. [3]) Every MV algebra \underline{V}^0 is isomorphic with the subdirect product of the linearly ordered MV algebras.

Since every first ideal of MV algebra \underline{V} is the first ideal of the MV_k algebra \underline{V}_k we also get Lemma 7 for MV_k algebras. Then from Lemma 5 and Lemma 7 (for MV_k algebras) and Birkhoff's [1] we get

THEOREM 2. (The representation theorem for MV_k algebras) Every MV_k algebra \underline{V}_k is isomorphic with the subdirect product MV_z algebras \underline{C}_z^k ($z \leq k$). If k is even, then z are even too.

The particular case of the last theorem obtained by using Lemma 6 is the following representation theorem for centered MV_k algebras:

Theorem 3. Every centered MV_k algebra \underline{V}_k^c is isomorphic with the subdirect product MV_k algebras \underline{C}_k .

The algebra of formulas

(4)
$$\underline{L} = \langle L, \rightarrow, \vee, \wedge, \neg \rangle$$

will be called the language of the Łukasiewicz's sentential calculi. Let us now consider the algebra

(5)
$$\underline{U} = \langle U, \Rightarrow, \vee, \wedge, \neg \rangle$$

similar to \underline{L} and such that U is an (partially) ordered set containing the maximal element 1.

Definition 5. If $X \subseteq L$ is an arbitrary set of formulas, then put

(6) $Cn_{\underline{U}}(X) = \{\alpha \in L | \text{ for every homomorphism } h : \underline{L} \to \underline{U} \text{ if } hX \subseteq \{\underline{1}\}, \text{ then } h\alpha = \underline{1}\}.$

We say that Cn_U is the consequence operation determined by \underline{U} .

From the well known McNaughton's criterion the following lemma can easily be proved:

LEMMA 8. In the matrix M_k $(k \ge 2)$ there are definable the endomorphisms $\sigma_1, \sigma_2, \ldots, \sigma_{k-1}$ be means of \to and \neg .

LEMMA 9. In the MV_k algebra \underline{C}_k $(k \ge 2)$ one can define the implication of LUkasiewicz by the formula

(7)
$$x \to y = \overline{x} + y$$
.

Lemma 10. $Cn_{\underline{C}_k} = Cn_{M_k} \quad (k \geqslant 2).$

From the last lemma and from Theorem 3 we obtain the following:

Theorem 4. $Cn_{\underline{V}_k^c} = Cn_{M_k}$ for an arbitrary centered MV_k algebra \underline{V}_k^c $(k \ge 2)$.

Remarks.

- (i) For k=2,3,4 the notions "k-valued algebra of Łukasiewicz" and " MV_k algebra" coincide.
- (ii) The analogical result to the above mentioned theorem cannot be obtained for the arbitrary (not necesserily centered) MV_k algebras.

 MV_k Algebras 189

References

[1] G. Birkhoff, Subdirect unions in universal algebra, Bull. Amer. Math. Soc. 50 (1944), pp. 765–768.

- [2] C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88 (1958), pp. 467–490.
- [3] C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), pp. 74–80.
- [4] W. Suchoń, On non equivalence of two definitions of the algebras of Lukasiewicz, this **Bulletin**, vol. 1 (1972), no. 1.

Institute of Philosophy Łódź, University