B. Dahn

GENERALIZED KRIPKE MODELS

This is a lecture read at the V Conference Logical Calculi, Wrocław, November 1973.

A Kripke model for the modal logic S4 a triple (A, \leq, \Vdash) such that (A, \leq) is a partially ordered set and \Vdash is a relation between elements of A and expressions of the language of S4. $a \Vdash \alpha$ is defined by induction on the form of the expression α , e.g. $a \Vdash \Box \alpha$ if and only if for every a': If $a \leq a'$ then $a' \Vdash \alpha$. We can try to formalize the right side of this definition by $\forall x_1 (a \leq x_1 \to x_1 \Vdash \alpha)$. Since this definition of $a \Vdash \Box \alpha$ does not depend on the form of α we can restrict our attention to the case $\alpha = p_0$. The formula $\forall x_1 (a \leq x_1 \to x_1 \Vdash p_0)$ is almost a formula of some elementary language as usual in the model theory of classical logics. The only unusual part is $x_1 \Vdash p_0$. So there arise three simple questions.

- 1) What is the propositional variable p from the point of view of classical model theory?
- 2) What is ⊩ from the point of view of classical model Theory?
- 3) What does $a \Vdash p$ mean?

Ad 1) Note that the meaning of p in the model (A, \leq, \Vdash) is determined by the set $\Vdash (p) = \{a \in A : a \Vdash p\} \subseteq A$. So we can regard p as a variable for subsets of A, i.e. p is a unary relational symbol.

Ad 2) Note that \Vdash is determined by the sequence of the sets $\Vdash (p_i)(i < \omega)$. So we can regard \Vdash as an interpretation of the unary relational symbols p_i $(i < \omega)$ as subsets of A. Henceforth p_i $(i < \omega)$ will be regarded as a unary relational symbol and will be regarded as an interpretation of all the symbols p_i $(i < \omega)$. 4 B. Dahn

Ad 3) $a \Vdash p$ if and only if $a \in \Vdash (p)$ and therefore $a \Vdash p$ if and only if $(A, \leqslant, \Vdash, a) \models p(a)$.

Therefore $a \Vdash \Box p_0$ if and only if $(A, \leq, \Vdash, a) \models \forall x_1 (a \leq x_1 \rightarrow p_0(x_1))$

and we have obtained a definition of the relation $a \Vdash \Box p_0$ in purely model theoretic terms. So the formula

$$\forall x_1(x_0 \leqslant x_1 \rightarrow p_0(x_1))$$

is in S4 associated with the symbol \square . In a similar way we can associate $\neg p_0(x_0)$ and $p_0(x_0) \land p_1(x_0)$ with \neg and \land respectively. This shows a natural way to generalize the concept of Kripke models.

Before describing this generalization we state some conventions. For every similarity type τ $L(\tau)$ is the elementary language based on the symbols of τ and on the individual variables x_i $(i < \omega)$. For every language L $F_0(L)$ denotes the set of all formulas of L which contain at most the variable x_0 free. Now let \underline{K} be an arbitrary class of models of a fixed type σ . In the case of S4 \underline{K} is the class of all partially ordered sets. Let $\underline{functor}$ be a nonempty subset of $F_0(L(\sigma \cup \{p_i: i < \omega\}))$. In the case of S4 $\underline{functor} = \{H_{\neg}, H_{\wedge}, H_{\vee}, H_{\rightarrow}, H_{\leftrightarrow}, H_{\square}, H_{\diamondsuit}\}$ where $H_{\neg} = \neg p_0(x_0), H_{\wedge} = \overline{p_0(x_0)} \wedge p_1(x_0), H_{\vee} = p_0(x_0) \vee p_1(x_0), H_{\rightarrow} = p_0(x_0) \rightarrow p_1(x_0), H_{\rightarrow} = p_0(x_0) \leftrightarrow p_1(x_0), H_{\square} = \forall x_1(x_0 \leqslant x_1 \rightarrow p_0(x_1))$ and $H_{\diamondsuit} = \exists x_1(x_0 \leqslant x_1 \wedge p_0(x_1))$.

Fort every natural number n let $\underline{n-functor} = \underline{functor} \cap F_0(L(\sigma \cup \{p_i: i < n\})) - \bigcup_{\substack{m < n \\ m < n}} \underline{m-functor}$. In the case of $\underline{S4} \ \underline{0-functor} = \emptyset$, $\underline{1-functor} = \{H_{\neg}, H_{\square}, H_{\diamondsuit}\}$, $\underline{2-functor} = \{H_{\wedge}, H_{\vee}, H_{\rightarrow}, H_{\leftrightarrow}\}$ and for $\underline{n > 2} \ \underline{n-functor} = \emptyset$. For every $\underline{H} \in \underline{functor}$ introduce a new symbol f_H which will act as the propositional functor associated with H. In the case of S4 let $f_{H_{\neg}} = \neg$, $f_{H_{\wedge}} = \wedge$, $f_{H_{\vee}} = \vee$, $f_{H_{\rightarrow}} = \rightarrow$, $F_{H_{\leftrightarrow}} = \leftrightarrow$, $f_{H_{\square}} = \square$ and $f_{H_{\diamondsuit}} = \diamondsuit$. Now we are ready to define the language of the propositional logic defined by the semantics $S = (\underline{K}, \underline{functor})$. The set $\underline{expr}(S)$ of all expressions is defined to be the least set such that

- 1) $\{p_i : i \in \omega\} \subseteq expr(S)$
- 2) for every $H \in \overline{n-functor}$, $\alpha_0, \ldots, \alpha_{n-1} \in expr(S)$

$$f_H\alpha_0,\ldots,\alpha_{n-1}\in expr(S).$$

Next we define a function $\underline{meta} : \underline{expr}(S) \to F_0(L(\sigma \cup \{p_i : i < \omega\}))$. The formula $\underline{meta} - \alpha$ is defined by induction on the form of α . Let $\underline{meta} - p_i = p_i(x_0)$, $\underline{meta} - f_H\alpha_0 \dots \alpha_{n-1} = H(p_i/\underline{meta} - \alpha_i)$. Here $H(p_i/\underline{meta} - \alpha_i)$ is the formula resulting from H by replacing each subformula of the form $p_i(t)$ where t is some term of $L(\sigma)$ by $\underline{meta} - \alpha_i(t)$. It is assumed that no confusion of variables is caused by these substitutions. Otherwise change the names of bound variables in $\underline{meta} - \alpha_i(x_0)$.

We have e.g. $\underline{meta} - \neg \Box \neg p_0 = \neg \forall x_1(x_0 \leqslant x_1 \rightarrow \neg p_0(x_1))$ in the case of S4.

Now we are ready to define for every $\underline{A} \in \underline{K}$, $a \in |\underline{A}|$, $\alpha \in \underline{expr}(S)$ and for every interpretation \Vdash of the relational symbols p_i $(i < \omega)$ as subsets of $|\underline{A}|$

$$a \Vdash \alpha$$
 if and only if $(\underline{A}, \vdash, a) \models \underline{meta} - \alpha(a)$.

 α is said to be a tautology $(\alpha \in \underline{taut}(S))$ if $a \Vdash \alpha$ is true for every $a \in |\underline{A}|$ where $\underline{A} \in \underline{K}$ and for every interpretation \Vdash . By the same method we can obtain the usual Kripke semantics for several modal and tense logics. Now let \underline{expr} be an arbitrary free algebra with countably many generators and let \underline{taut} be a subset of \underline{expr} . The Kripke semantics $S = (\underline{K}, \underline{functor})$ is said to be adequate for the logic $(\underline{expr}, \underline{taut})$ if there is an isomorphism of \underline{expr} onto $(\underline{expr}(S), f_H)_{H \in \underline{functor}}$ mapping \underline{taut} onto $\underline{taut}(S)$. The proof of the following theorem can be found in [1].

Theorem. The following conditions are equivalent.

- 1) There is a Kripke semantics adequate for (expr, <u>taut</u>)
- 2) There is a logical matrix $(M, M^*, ...)$ which is adequate for $(\underline{expr}, \underline{taut})$ and such that $M \neq M^*$ and M^* has exactly one element.

The presented method can be extended to non-classical predicate calculi. It makes it possible to employ the methods of classical model theory in the investigation of non-classical logics.

References

[1] B. Dahn, *Generalized Kripke models*, forthcoming in **Bull. Acad. Polon. des Sc.**, Sér. Sc. Mathem., Astronom., Phys.

6 B. Dahn

Institute of Mathematics University of Berlin