Janusz Czelakowski

PARTIAL BOOLEAN σ -ALGEBRAS

The present note contains some simple generalizations of notions introduced in [1] and [2]. We refer the reader to those papers for all relevant definitions.

DEFINITION 1. We shall say that the system $\underline{B} = \langle B; \stackrel{!}{\circ}; \vee, \neg; 1 \rangle$ is a partial Boolean σ -algebra ($PB\sigma$ Algebra) if \underline{B} is a partial Boolean algebra and for every denumerable sequence $\{a_n\}_{n\in N}$ of mutually commeasurable elements of $B(a_m \stackrel{!}{\circ} a_n \text{ for } m, n \in N)$ there exists $b \in B$ that

- (i) $\forall_{n \in N} a_n \subseteq b$ (i.e., $a_n \circ b$ and $a_n \vee b = b$)
- (ii) $\forall_{c \in B} \forall_{n \in N} (a_n \ \circ c \Rightarrow b \ \circ c)$
- (iii) $\forall_{c \in B} \forall_{n \in N} (a_n \subseteq c \Rightarrow b \subseteq c)$

We shall write: $b = \bigvee_{n=1}^{\infty} a_n$. \bigvee is a well-defined partial, infinite function.

EXAMPLE 1. Let L(H) be the set of all closed subspaces of a separable Hilbert space. It is well-known that $\underline{L}(H) = \langle L(H); \cdot \rangle; \vee; \neg; H \rangle$ is a PAAlgebra, where $\cdot \rangle$ is defined as follows:

 $H_1 \ _{\circ} \ H_2$ iff there exist a basis ε and subsets

 $\varepsilon_i \subseteq \varepsilon(i=1,2)$ such that ε_i is a basis in $H_i(i=1,2)$

and $\neg H_0$ is the orthogonal complementation of H_0 ([1]).

 $\underline{L}(H)$ is also a $PB\sigma$ Algebra because of the following simple fact:

If $H_1, H_2, \ldots, H_n, \ldots$ are mutually commeasurable $(H_m \ | \ H_n$ for $m, n \in N)$ then there exists a basis ε in H and subsets $\varepsilon_n \subseteq \varepsilon(n = 1, 2, \ldots)$ such that ε_n is a basis in $H_n(n = 1, 2, \ldots)$

46 Janusz Czelakowski

As before one can consider the logic based on $PB\sigma$ Algebras. Strictly speaking, let $P_0 = \{x_{\nu} : \nu < \omega_1\}$ be the set of variables. P – the set of formulas of infinite length-is defined as the least set satisfying the conditions:

- (1) $P_0 \subseteq P$
- (2) If $\varphi_1, \varphi_2, \ldots \in P$, then $\bigvee \{\varphi_n : n \in N\} \in P$
- (3) If $\varphi \in P$, then $\neg \varphi \in P$.

By a valuation h of \underline{P} in \underline{B} ($\underline{B} \in PB\sigma A$) we shall mean every partial homomorphism of \underline{P} into \underline{B} , i.e., a function whose domain $Dom(h) \subseteq P$ $(h:Dom(h)\to B)$ is the least set, such that:

- (a) Some variables belong to Dom(h) (but not necessarily all); if $x_{\nu} \in$ Dom(h), then $hx_{\nu} \in B$.
- (b) If $\varphi_1, \varphi_2, \ldots \in Dom(h)$ and $h\varphi_1, h\varphi_2, \ldots$ are mutually comeasurable, then $\bigvee \{\varphi_n : n \in N\} \in Dom(h); h(\bigvee \{\varphi_n : n \in N\}) = \bigvee_{n=1}^{\infty} h\varphi_n.$ (c) If $\varphi \in Dom(h)$, then $\neg \varphi \in Dom(h); h \neg \varphi = \neg (h\varphi).$

By a model \mathcal{M} we shall mean any pair $\mathcal{M} = \langle \underline{B}, h \rangle$, where $\underline{B} \in PB\sigma A$ and h is a valuation $(h : \underline{P} \to \underline{B})$. We shall say that φ is valid in $\mathcal{M} = \langle \underline{B}, h \rangle$ if $\varphi \in Dom(h)$ and $h\varphi = 1$. A formula φ holds in B $(B \in PB\sigma A)$ if $h\varphi = 1$ for every valuation $h: \underline{P} \to \underline{B}$, such that $\varphi \in Dom(h)$. Similarly, we shall say that an identity $\varphi = \phi$ holds in $\underline{B}(\varphi, \phi \in P)$ if $h\varphi = j\phi$ for every valuation $h(h: \underline{P} \to \underline{B})$, such that $\varphi, \phi \in Dom(h)$. A formula φ is valid if it holds in every $PB\sigma$ Algebra.

It is easy now to define a consequence operation Cn on P. Let $\alpha \in P$ and $X \subseteq P$. Then $\alpha \in Cn(X)$ iff for every $PB\sigma Algebra \underline{B}$ and every valuation $h: \underline{P} \to \underline{B}$ it holds:

$$\forall_{\beta \in X} (\beta \in Dom(h) \Rightarrow h\beta = 1) \Rightarrow (\alpha \in Dom(h) \Rightarrow h\alpha = 1).$$

Let us observe that $Cn(\emptyset)$ is the set of all valid formulas. In a similar way one can construct the logic based on PBAlgebras. Then Cn is a structural consequence operation.

As in the case of PBAlgebras it is easy to axiomatize $Cn(\emptyset)$ by a simple modification of methods of Kochen and Specker [1].

It is interesting to establish connections between $PB\sigma$ Algebras and quantum logic (i.e., weakly modular orthoposets). Let us recall this notion:

 $\underline{L} = \langle L;^{\perp}; \subseteq; 1 \rangle$ is a quantum Logic if it is a finitely additive quantum logic (see [2], p. 168) and satisfies the condition:

 $(L1)^*$ For every denumerable sequence $\{a_n\}_{n\in N}$ of mutually orthogonal elements of L there exists the least upper bound $\bigvee_{n=1}^{\infty} a_n$.

A partial Boolean σ -algebra is transitive if it is transitive as PBAlgebra (see [2], p.167).

THEOREM 1. (a) Let $\underline{B} = \langle B; | \cdot, \forall; \neg; 1 \rangle$ be a transitive partial Boolean σ -algebra. Then $\underline{B}^* = \langle B; \subseteq; \bot; 1 \rangle$, where $a^{\perp} = \neg a$, is a quantum Logic.

- (b) Let $\underline{L} = \langle L; \subseteq; \perp; 1 \rangle$ be a quantum logic. Then $L^0 = \langle; \leftrightarrow; \vee, \neg; 1 \rangle$ is a transitive PB σ Algebra, where $\neg a = a^{\perp}$ and $a \vee b$ is the l.u.b. of a and $b \ (a \leftrightarrow b)$.
 - (c) Transitive partial Boolean σ -algebras \underline{B} and \underline{B}^{*0} are identical.
 - (d) Quantum logics \underline{L} and \underline{L}^{0*} are identical.

Partial Boolean σ -algebras are generalizations of quantum logics (because there exist $PB\sigma$ Algebras which are not inbeddable into any transitive $PB\sigma$ Algebra). It would be interesting from physical point of view to develope a calculus of observables just in partial Boolean σ -algebras. Connections with some physical problems like Hidden-Variable Theories are easily seen in the following Imbedding Theorems:

Theorem 2A. Let $\underline{L} \in PB\sigma A$. The following conditions are equivalent:

- (i) There exists a homomorphism of \underline{L} into a Boolean σ -algebra.
- (ii) No formula valid in all Boolean σ -algebras is refutable in L.
- (iii) For every denumerable set $A = \{a_1, a_2, \ldots\} \subseteq L$ there exists a sequence $(\varepsilon_1, \varepsilon_2, \ldots)$, $\varepsilon_n = \left\{ \begin{array}{l} 0 \\ 1 \end{array} \right.$, such that for every set of mutually commeasurable elements $\{a_{k_1}, a_{k_2}, \ldots\} \subseteq A$ the inequality holds; $\bigwedge_{m=1}^{\infty} a_{k_m}^{\varepsilon_{k_m}} \neq 0.$

Theorem 2B. Let $\underline{L} \in PB\sigma A$. The following conditions are equivalent:

- (i) \underline{L} can be weakly imdedded into a Boolean σ -algebra.
- (ii) Each formula valid in all Boolean σ -algebras holds in \underline{L} .

48 Janusz Czelakowski

(iii) For every denumerable set $A = \{a_1, a_2, \ldots\} \subseteq L$ and every element $a_{i_0} \in A \ (a_{i_0} \neq 0) \ there \ exists \ a \ sequence \ (\varepsilon_1, \varepsilon_2, \ldots) \ such \ that$ 1. $\varepsilon_{i_0} = 1$.

2. For every set of mutually commeasurable elements $\{a_{k_1}, a_{k_2}, \ldots\} \subseteq A$ the inequality holds: $\bigwedge_{m=1}^{\infty} a_{k_m}^{\varepsilon_{k_m}} \neq 0$.

THEOREM 2C. Let $\underline{L} \in PB\sigma A$. The following conditions are equivalent:

- (i) \underline{L} can be imbedded into a Boolean σ -algebra.
- (ii) Each identity $\varphi = \phi$, which holds in all Boolean σ -algebras, is valid in \underline{L} .
- (iii) For every denumerable set $A = \{a_1, a_2, \ldots\} \subseteq L$ and every two distinct elements $a_{i_1}, a_{i_2} \in A$ there exists a sequence $(\varepsilon_1, \varepsilon_2, \ldots)$ such

 - 1. either $\varepsilon_{i_1}=1$, $\varepsilon_{i_2}=0$ or $\varepsilon_{i_1}=0$, $\varepsilon_{i_2}=1$ 2. for every set of mutually commeasurable elements $\{a_{k_1},a_{k_2},\ldots\}\subseteq$ A the inequality holds: $\bigwedge_{m=1}^{\infty} a_{k_m}^{\varepsilon_{k_m}} \neq 0.$

References

- [1] S. Kochen and E. P. Specker, Logical structure aristing in quantum theory, [in:] The theory of models, ed. by J. W. Addison, L. Henkin and A. Tarski, North-Holland, Amsterdam, 1965.
- [2] J. Czelakowski, Some remarks on transitive partial Boolean algebras, Bulletin of the Section of Logic of Inst. of Phil. and Soc. **Pol. Acad. Sci.**, vol. 2, No. 3.