Bulletin of the Section of Logic Volume 3/1 (1974), pp. 30–32 reedition 2012 [original edition, pp. 30–33]

Tadeusz Prucnal and Andrzej Wroński

AN ALGEBRAIC CHARACTERIZATION OF THE NOTION OF STRUCTURAL COMPLETENESS

An extended version of this abstract will appear in Reports on Mathematical Logic.

Let $\mathcal{F} = \langle F, D \rangle$ be the free algebra in the class of all algebras of some fixed type free-generated by the set $F_c \subseteq F$. The algebra \mathcal{F} will be called language, the operations from D – connectives, the elements of F – formulas and the elements of F_0 – variables. The subsets of $2^F \times F$ will be called rules of inference or shortly - rules. By propositional calculus we mean any pair $\Delta = \langle A, R \rangle$ where $A \subseteq F$ and R is a set of structural rules (see [2]). Every set of formulas containing A and closed with respect to each rule from Rwill be called Δ -system. The symbol C_{Δ} denotes the consequence operation in \mathcal{F} determined by the calculus Δ (i.e. $C_{\Delta}(X)$ is the intersection of all Δ -systems containing X). The calculus Δ is called standard iff C_{Δ} is finite consequence operation (see [2]). It is known that for every standard calculus Δ , the union of arbitrary chain of Δ -systems is Δ -system and thus by Kuratowski-Zorn's lemma the condition $\alpha \notin C_{\Delta}(X)$ implies the existence of Δ -system Y such that $\alpha \notin Y \supseteq X$ and Y is a maximal Δ -system having that property. Every such Y will be called relatively maximal Δ supersystem of X with respect to α . If Δ is standard calculus then by $RMS(\Delta)$ we denote the family of all relatively maximal Δ -supersystems (i.e. $Y \in RMS(\Delta)$ iff for some $X \subseteq F$ and $\alpha \in F$, Y is relatively maximal Δ -supersystem of X with respect to α). A rule is called Δ -permissible (Δ derivable) iff $C_{\Delta}(\emptyset)$ (every Δ -system) is closed with respect to this rule. Following [1] we say that the calculus Δ is structurally complete iff every structural and Δ -permissible rule is Δ -derivable.

The matrix is a pair $\langle \mathcal{M}, Y \rangle$ where \mathcal{M} is an algebra similar to \mathcal{F} and X is a subset of the universe of \mathcal{M} . The common algebraic concepts like: homomorphism, isomorphism, embedding, congruence relation e.t.c are defined for matrices in [2]. We have the following general criterion of structural completeness for standard propositional calculi:

THEOREM 1. If Δ is standard then it is structurally complete iff the following condition holds: (*) for every $Y \in RMS(\Delta)$ there exists a homomorphism of the matrix $\langle \mathcal{F}, Y \rangle$ into $\langle \mathcal{F}, C_{\Delta}(\emptyset) \rangle$.

Let $E \subseteq F$ be a set of formulas containing exactly two variables, say y and z, We will write $E(\alpha, \beta)$ to denote the set of all formulas which results by simultaneous substitution of α for y and β for z in some formula from E. The set E will be called Δ -equivalence iff for every $X \subseteq F$ the relation $\{\langle \alpha, \beta \rangle : E(\alpha, \beta) \subseteq C_{\Delta}(X)\}$ is a congruence of the matrix $\langle \mathcal{F}, C_{\Delta}(X) \rangle$. It is easy to see that E is Δ -equivalence iff the following conditions hold:

- (i) $E(\alpha, \alpha) \subseteq C_{\Delta}(\emptyset)$,
- (ii) $E(\alpha, \beta) \subseteq C_{\Delta}(E(\beta, \alpha)),$
- (iii) $E(\alpha, \beta) \subseteq C_{\Delta}(E(\alpha, \gamma) \cup E(\gamma, \beta)),$
- (iv) for every $d \in D$ if d is n-ary connective then $E(d(\alpha_1, \ldots, \alpha_n), d(\beta_1, \ldots, \beta_n)) \subseteq C_{\Delta}(E(\alpha_1, \beta_1) \cup \ldots \cup E(\alpha_n, \beta_n)),$
- (v) $\alpha \in C_{\Delta}(E(\alpha, \beta)) \cup \{\beta\}$).

Note that if E and E' are Δ -equivalences then $C_{\Delta}(E(\alpha,\beta)) = C_{\Delta}(E'(\alpha,\beta))$ which gives that for every $X \subseteq F$ the congruence relations in $\langle \mathcal{F}, C_{\Delta}(X) \rangle$ obtained by means of E and E' are equal. Thus if Δ -equivalences exist then the congruence relation in $\langle \mathcal{F}, C_{\Delta}(X) \rangle$ obtainable by means of some Δ -equivalence is unique and will be denoted by \equiv_X . We call the calculus Δ equivalential iff some Δ -equivalence exists.

THEOREM 2. If Δ is standard and equivalential then it is structurally complete iff the following condition holds: (**) for every $Y \in RMS(\Delta)$ there exists an embedding of the matrix $\langle \mathcal{F}/\equiv_Y, Y/\equiv_Y \rangle$ into $\langle \mathcal{F}/\equiv_\emptyset, C_{\Delta}(\emptyset)/\equiv_\emptyset \rangle$.

Observe that if Δ is equivalential, Y and X are Δ -systems and h is a homomorphism of the matrix $\langle \mathcal{F}, Y \rangle$ into $\langle \mathcal{F}, X \rangle$ then the mapping g: $[\alpha] \equiv_Y \to [h(\alpha)] \equiv_X$ is an embedding of $\langle \mathcal{F}/\equiv_Y, Y/\equiv_Y \rangle$ into $\langle \mathcal{F}/\equiv_X, X/\equiv_X \rangle$ and therefore Theorem 2 can be obtained from Theorem 1 as a corollary.

References

- [1] W. A. Pogorzelski, Structural Completeness of the Propositional Calculus, Bulletin de l'Academie Polonaise des Sciences, Série des sciences mathematiques, astronomiques et physiques, 19, No 5 (1971), pp. 349–351.
- [2] R. Wójcicki, Matrix Approach in Methodology of Sentential Calculi, Studia Logica 52 (1973), pp. 7–37.

Department of Logic Silesian University, Katowice

and

Department of Logic Jagiellonian University, Cracow