M. T. Porebska and A. Wroński

A CHARACTERIZATION OF FRAGMENTS OF THE INTUITIONISTIC PROPOSITIONAL LOGIC

We shall use the symbols: \rightarrow , \leftrightarrow , \wedge , \vee , \neg as the well-known connectives (implication, equivalence, conjunction, disjunction, negation). For every set of connectives $Y \subseteq \{\rightarrow, \leftrightarrow, \wedge, \vee, \neg\}$ by F_{Ψ} we mean the set of formulas built up by means of propositional variables from an infinite set V and the connectives from Ψ (we shall write F instead of operation C in F_{Ψ} is called Ψ -consequence (see [1]) iff the following conditions hold for every $X \subseteq F_{\Psi}$, $\alpha, \beta \in F_{\Psi}$:

- (\rightarrow) if $\rightarrow \in \Psi$ then $C(X \cup \{\beta\}) \subseteq C(X \cup \{\alpha\})$ iff $\alpha \rightarrow \beta \in C(X)$,
- (\leftrightarrow) if $\leftrightarrow \in \Psi$ then $C(X \cup \{\beta\}) = C(X \cup \{\alpha\})$ iff $\alpha \leftrightarrow \beta \in C(X)$,
- (\wedge) if $\wedge \in \Psi$ then $C(\{\alpha, \beta\}) = C(\{\alpha \wedge \beta\}),$
- $(\vee) \quad \text{if } \vee \in \Psi \quad \text{ then } C(X \cup \{\alpha\}) \cap C(X \cup \{\beta\}) = C(X \cup \{\alpha \vee \beta\}),$
- (\neg) if $\neg \in \Psi$ then $C(X \cup \{\alpha\}) = F_{\Psi}$ iff $\neg \alpha \in C(X)$.

Let Cn denotes the consequence operation in F determined by the theorems of the intuitionistic propositional logic and the detachment rule for the implication connective \to . Putting $Cn_{\Psi}(X) = F_{\Psi} \cap Cn(X)$ for every $X \subseteq F_{\Psi}$ one defines the consequence operation Cn_{Ψ} in F_{Ψ} (obviously $Cn = Cn_{\Psi}$ in the case $\Psi = \{\to, \leftrightarrow, \land, \lor, \neg\}$). Grzegorczyk [1] proved that the intuitionistic consequence operation Cn can be characterized as the smallest $\{\to, \leftrightarrow, \land, \lor, \neg\}$ -consequence. We have the following generalization of Grzegorczyk's results:

THEOREM. For every $\Psi \subseteq \{\rightarrow, \leftrightarrow, \land, \lor, \neg\}$, the consequence operation Cn_{Ψ} is the smallest Ψ -consequence.

The fact above can be viewed as a kind of separable characterization of fragments of the intuitionistic propositional logic (comp. [2]). We are

informed that a similar result was achieved independently by S. J. Surma (unpublished).

References

- $[1]\,$ A. Grzegorczyk, An approach to logical calculus, Studia Logica 30 (1972), pp. 33-41.
- [2] A. Horn, The separation theorem of intuitionist propositional calculus, J. S. L. 27 (1962), pp. 391–399.

Department of Logic Jagiellonian University Cracow