Cecylia Rauszer, Bogdan Sabalski

REPRESENTATION THEOREM FOR DISTRIBUTIVE PSEUDO-BOOLEAN ALGEBRA

This is an abstract of the paper which will be presented at the Conference for Logical Calculi (Wrocław, November 22-24).

1. Distributive pseudo-Boolean algebras

We shall say that an abstract algebra $\underline{A}=(A,\cup,\cap,\Rightarrow,\neg)$ is a pseudo-Boolean algebra provided that

- (i) (A, \cup, \cap) is a lattice with the zero element,
- (ii) is a binary operation which satisfies the following condition: $x \le a \Rightarrow b$ if and only if $x \cap a \le b$ for any $a, b, x \in A$,
- (iii) ¬ is an unary operation defined by the formula

$$\neg a = a \Rightarrow \bigwedge$$

- 1.1. In every pseudo-Boolean algebra $\underline{A} = (A, \cup, \cap, \Rightarrow, \neg)$ $a \leq b$ iff there exists $c \in A$ such that $a \leq b \cup c$ and $a \cap c \leq b$ for every $a, b \in A$.
- 1.2. Let $\underline{A}=(A,\cup,\cap,\Rightarrow,\neg)$ be a pseudo-Boolean algebra. If an infinite join $\bigcup_{t\in T}a_t$ exists in \underline{A} , then for every $a\in A$ the join $\bigcup_{t\in T}a_t\cap a$ also exists in \underline{A} and

$$(1) a \cap \bigcup_{t \in T} a_t = \bigcup_{t \in T} a_t \cap a$$

If an infinite meet $\bigcap_{t \in T} b_t$ exists in a pseudo-Boolean algebra, then for every a \underline{A} the meet $\bigcap_{t \in T} (a \cup b_t)$ also exists in A and

(2)
$$a \cup \bigcap_{t \in T} b_t \leqslant \bigcap_{t \in T} (b_t \cup a).$$

The proof of 1.2 can be found in [2].

It is well known that the sign \leq in (2) can not be replace by =.

We shall call a distributive pseudo-Boolean algebra any pseudo-Boolean algebra such that $\,$

$$(D) a \cup \bigcap_{t \in T} b_t = \bigcap_{t \in T} (b_t \cup a)$$

provided that all infinite meets exists.

For simplify our notation these algebras will be denoted by DPBA.

An example for a DPBA can be constructed in the following way. By an quasi-ordered set we mean an ordered pair $\underline{C} = \langle C, \leqslant \rangle$ – where C is a non-empty set, \leqslant is a transitive and reflexive relation on C. Let B C. We call B open if whenever $x \in B$ and $x \leqslant y$ then $y \in B$. We take for $\underline{0}_{\leqslant}$ the collection of all open subsets of \underline{C} and for the ordering relation \leqslant we take set-theoretical inclusion. We note that the algebra $(\underline{0}_{\leqslant}, \cup, \cap)$ – where the operations \cup and \cap are just the ordinary union and intersection, respectively – is a distributive lattice with the zero element θ (θ – the empty set). Now, let \Rightarrow , \neg be two new operations in $\underline{0}_{\leqslant}$ defined by the formulas:

$$(3)\ R \Rightarrow S = \{c \in C : \sqcap c' \in C (c \leqslant c' \land c' \in R \rightarrow c' \in S),$$

$$(4) \ \neg R = \{c \in C : \Box c' \in C (c \leqslant c' \land c' \not\in R),\$$

for every $R, S \in \underline{0}_{\leq}$.

By an easy verification we can prove the following

1.3. The algebra $\underline{0}_{\leqslant} = (\underline{0}_{\leqslant}, \cup, \cap, \Rightarrow, \neg)$ – where $\underline{0}_{\leqslant}$ is the family of all open sets of a quasi-ordered set \underline{C} , the operations \cup and \cap are set-theoretical union and intersection, respectively, the operations \Rightarrow and \neg are defined by (3) and (4), respectively, – is a complete DPBA.

Theorem 1.3 yields an important example of a DPBA. In the sequel, this algebra will be called an order topology. This example is typical in this sense that we have the following representation theorem for DPBA:

Theorem 1. For every DPBA \underline{A} there exist an order topology $\underline{0}_{\leqslant}$ and monomorphism h from \underline{A} to $\underline{0}_{\leqslant}$.

The proof of Theorem 1 is the same as the proof of analogous theorem for pseudo-Boolean algebra [1].

2. Q-filters in DPBA

Let $\underline{A} = (A, \cup, \cap, \Rightarrow, \neg)$ be a DPBA algebra, and let (Q) be a set of infinite joins and meets in A:

$$(Q) \quad a_{2n} = \bigcup_{a \in A_{2n}} a \qquad n \in \omega$$
$$b_{2n+1} = \bigcap_{b \in B_{2n+1}} b \quad n \in \omega$$

A prime filter ∇ is said to be a Q-filter provided that

- (f₁) for every $n \in \omega$ if $a_{2n} \in \nabla$ then $A_{2n} \cap \nabla \neq 0$,
- (f₂) for every $n \in \omega$ if $B_{2n+1} \subset \nabla$ then $b_{2n+1} \in \nabla$.

The next theorem is analogous to the Rasiowa-Sikorski lemma.

THEOREM 2. Let $\underline{A} = (A, \cup, \cap, \Rightarrow, \neg)$ be a DPBA and let the set (Q) be defined as above. Let x, y be the elements of A such that the relation $x \leq y$ does not hold. Then there exists a Q-filter ∇ such that $x \in \text{nabla}$ and $y \notin \nabla$.

PROOF. We can define two sequences $\langle \alpha_n, n \in \omega \rangle$ and $\langle \beta_n, n \in \omega \rangle$ of the elements of A such that:

- (i) $\alpha_0 = y \, \beta_0 = x$,
- (ii) $\alpha_{n-1} \leqslant \alpha_n$ and $\beta_{n-1} \geqslant \beta_n$ for n > 0,
- (iii) either $\beta_{2n+1} \leq b_{2n+1}$ or there exists $b \in B_{2n+1}$ such that $b \geqslant \alpha_{2n+1}$ for every $n \in \omega$, either there exists $a \in A_{2n}$ such that $\beta_{2n} \leq a$ or $a_{2n} \leq \alpha_{2n}$ for every $n \in \omega$,
- (iv) for every $n \in \omega$ the relation $\beta_n \leqslant \alpha_n$ does not hold.

Let I be the ideal generated by the sequence $\langle \alpha_n : n \in \omega \rangle$ and F be the filter generated by $\langle \beta_n : n \in \omega \rangle$. Then by (iv) I and F are disjoint and

- (v) either $b_{2n+1} \in F$ or there exists $b \in B_{2n+1}$ such that $b \in I$, for $n \in \omega$,
- (vi) either there exists $a \in A_{2n}$ such that $a \in F$ or $a_{2n} \in I$, for any $n \in \omega$.

It is well known that in a distributive lattice, every filter can be separated from an ideal disjoint from it by a prime filter. Let ∇ be a prime filter containing F such that is disjoint from I. It is obvious that $x \in \nabla$ and $x \notin \nabla$. By (v) and (iv) ∇ is the required Q-filter, which completes the proof of Theorem 2.

We observe that if for every $n \in \omega$ $a_{2n} = \bigcup_{a \in A_m} a$ and $b_{2n+1} = \bigcap_{b \in B_{2n+1}} b$ exist then

$$\bigcap_{a \in A_{2n}} (a \Rightarrow c) \quad \bigcap_{a \in A_{2n}} ((a \cap d) \Rightarrow c)$$

$$\bigcap_{b \in B_{2n+1}} (c \Rightarrow b) \quad \bigcap_{b \in B_{2n+1}} (c \Rightarrow (b \cup d))$$

also exist for every $n \in \omega$, $c, d \in A$.

- 2.1. Let $\underline{A} = (A, \cup, \cap, \Rightarrow, \neg)$ be a *DPBA* and suppose that for every $n \in \omega$, $A_{2n}, B_{2n+1} \subset A$ and
 - (i) a_{2n} and b_{2n+1} exist,
 - (ii) for any $c \in A$, $\{a \Rightarrow c | a \in A_{2n}\} \in \{B_{2k+1} | k \in \omega\}$

$$\{c \Rightarrow b|b \in B_{2n+1}\} \in \{B_{2k+1}|k \in \omega\}$$

(iii) for any
$$c, d \in A$$
, $\{(a \cap d) \Rightarrow c | a \in A_{2n}\} \in \{B_{2k+1} | k \in \omega\}$
 $\{c \Rightarrow (b \cup d) | b \in B_{2n+1}\} \in \{B_{2k+1} | k \in \omega\}$

Let ∇ be a Q-filter in \underline{A} . For every $a \in A$, let |a| denote an element of A/∇ . Then the relation \leq defined by the formula

$$|a| \leqslant |b| \text{ iff } a \Rightarrow b \in \nabla$$

is the lattice ordering in A/∇ and

$$\begin{aligned} |a| \cup |b| &= |a \cup b| & |a| \Rightarrow |b| &= |a \Rightarrow b| \\ |a| \cap |b| &= |a \cap b| & \neg |a| &= nega| \end{aligned}$$

If the infinite join $\bigcup_{a \in A_{2n}} |a|$ exists in \underline{A} then $\bigcup_{a \in A_{2n}} a$ exists in A/∇ and

 $\begin{array}{l} \bigcup_{a\in A_{2n}}|a|=|\bigcup_{a\in A_{2n}}a|. \\ \text{If the infinite meet} \bigcap_{b\in B_{2n+1}}b \text{ exists in }\underline{A} \text{ then the infinite meet} \bigcap_{b\in B_{2n+1}}|b| \end{array}$ exists in A/∇ and

$$\bigcap_{b\in B_{2n+1}}|b|=|\bigcap_{b\in B_{2n+1}}b|.$$
 Moreover, the algebra A/∇ is a $DPBA.$

2.2. Let \underline{A} be a *DPBA* and suppose that for $n \in \omega$ A_{2n} , $B_{2n+1} \subset A$ such that (1) – (iii) from 2.1 are satisfied. Let ∇ be a Q-filter such that $a \Rightarrow b \notin \nabla$. Then there exists a Q-filter ∇' such that $a \in \nabla'$, $b \notin \nabla'$ and $\nabla \subset \nabla'$.

Let $\underline{A} = (A, \cup, \cap, \Rightarrow, \neg)$ be a *DPBA* and let ∇ be a *Q*-filter such that $a \Rightarrow b \notin \nabla$. We take quotient algebra A/∇ . By 2.1 this algebra is a DPBA.

We note that relation $|a| \leq |b|$ does not hold. On account Theorem 2 there exists a Q-filter $\widetilde{\nabla}$ such that $|a| \in \widetilde{\nabla}$ and $|b| \notin \widetilde{\nabla}$. Let us set

$$\nabla' = \{ x \in A : |x| \in \widetilde{\nabla} \}.$$

It is obvious that ∇' is a filter. Moreover, ∇' is a Q-filter as $\widetilde{\nabla}$ is a Q-filter. We observe that $a \in \nabla'$ and $b \notin \nabla'$. Now, let $x \in \nabla$, then $|x| = V_{A/\nabla}$ and $|x| \in \widetilde{\nabla}$. It gives that $x \in \nabla'$ which proves that $\nabla \subset \nabla'$, i.e. ∇' is the required Q-filter.

We denote by ζ the set of all Q-filter of a DPBA. We take $\nabla \in \zeta$.

2.3. $a \Rightarrow b \in \nabla$ iff for every $\nabla' \in \zeta$ such that $\nabla \subset \nabla'$ if $a \in \nabla'$ then $b \notin \nabla'$. This lemma follows from 2.1.

THEOREM 3. For every DPBA \underline{A} there exist an order topology $\underline{0}_{\leqslant}$ and a monomorphism h from \underline{A} to $\underline{0}_{\leqslant}$ preserving a_{2n} and b_{2n+1} , for $n \in \omega$.

We take for $\underline{0}_{\leqslant}$ the class of all Q-filters of a DPBA \underline{A} and for \leqslant the set inclusion. Let h (a) be the set of all Q-filters $\nabla \in \underline{0}_{\leqslant}$ such that $a \in \nabla$. In standard way using Theorem 2 and 2.2 we show that h is the required monomorphism from A to $\underline{0}_{\leqslant} = (\underline{0}_{\leqslant}, \cup, \cap, \Rightarrow, \neg)$ – where the operations \Rightarrow and \neg are defined by (3) and (4), respectively.

References

- [1] M. C. Fitting, **Intuitionistic Logic Model Theory and Forcing**, North-Holland, Amsterdam-London 1969.
- [2] H. Rasiowa and R. Sikorski, The Mathematics of the Metamathematics, PWN, Warsaw 1963.

Mathematical Institute of Warsaw University