Grzegorz Dymek and Anna Kozanecka-Dymek

PSEUDO-BCI-LOGIC

Abstract

A non-commutative version of the BCI-logic, pseudo-BCI-logic, is introduced. Although it is not algebraizable, it is extended to logic which is so. The main result of the paper says that a pseudo-BCI-algebra is an algebraic counterpart of this extended logic (Theorem 3.2).

Keywords and phrases: pseudo-BCI-logic, pseudo-BCI-algebra, algebraizability of logic

Mathematics Subject Classification (2010): 03G25, 06F35

1. Introduction

The BCI-logic, mentioned by A. N. Prior in [11], is attributed to C. A. Meredith and dated in 1956. Its significance is due to a certain correspondence between combinators and implicational formulas (see [2] and [10]). The BCI-logic is the propositional logic with the axioms:

- (B) $(\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma)),$
- (C) $(\alpha \to (\beta \to \gamma)) \to (\beta \to (\alpha \to \gamma)),$
- (I) $\alpha \to \alpha$

and the only inference rule:

(MP):
$$\frac{\alpha, \alpha \to \beta}{\beta}$$
.

In 1966 K. Iséki introduced the concept of BCI-algebras as an algebraic counterpart of the BCI-logic (see [5]). Unfortunately, BCI-algebras fails to

be the models of the BCI-logic. W. J. Blok and D. Pigozzi proved that the BCI-logic is not algebraizable (see Theorem 5.9 of [1]). A BCI-algebra is an algebraic counterpart of the BCI-logic extended on one additional inference rule (see [7]):

(Imp):
$$\frac{\alpha,\beta}{\alpha\to\beta}$$
.

In this paper we present a non-commutative version of the BCI-logic, pseudo-BCI-logic $ps\mathcal{BCI}$. Although it is not algebraizable, we easily extend it to logic $ps\mathcal{BCI}'$ which is so. Moreover, we show that pseudo-BCI-algebras are the models of logic $ps\mathcal{BCI}'$, which is the main result of the paper. We do this similarly as it is done in [8] for pseudo-BCK-logic. The reader should also be familiar with [1].

2. Pseudo-BCI-algebras

A pseudo-BCI-algebra is a structure $\mathcal{X} = (X, \leq, \to, \leadsto, 1)$, where \leq is a binary relation on a set X, \to and \leadsto are binary operations on X and 1 is an element of X such that for all $x, y, z \in X$, we have

```
(a1) x \to y \le (y \to z) \leadsto (x \to z), x \leadsto y \le (y \leadsto z) \to (x \leadsto z),
```

- (a2) $x \le (x \to y) \leadsto y, x \le (x \leadsto y) \to y,$
- (a3) $x \le x$,
- (a4) if $x \leq y$ and $y \leq x$, then x = y,
- (a5) $x \le y \text{ iff } x \to y = 1 \text{ iff } x \leadsto y = 1.$

It is obvious that any pseudo-BCI-algebra $(X, \leq, \to, \leadsto, 1)$ can be regarded as a universal algebra $(X, \to, \leadsto, 1)$ of type (2, 2, 0). Note that every pseudo-BCI-algebra satisfying $x \to y = x \leadsto y$ for all $x, y \in X$ is a BCI-algebra. Notice also that every pseudo-BCI-algebra satisfying $x \leq 1$ for all $x \in X$ is a pseudo-BCK-algebra.

Now we list some basic properties of pseudo-BCI-algebras from [3], [6] and [9]. Let \mathcal{X} be a pseudo-BCI-algebra. The following holds for all $x, y, z \in X$:

- (b1) if $1 \le x$, then x = 1,
- (b2) if $x \leq y$, then $y \to z \leq x \to z$ and $y \leadsto z \leq x \leadsto z$,
- (b3) if $x \le y$ and $y \le z$, then $x \le z$,
- (b4) $x \to (y \leadsto z) = y \leadsto (x \to z),$

- (b5) $x \le y \to z \text{ iff } y \le x \leadsto z,$
- (b6) $x \to y \le (z \to x) \to (z \to y), x \leadsto y \le (z \leadsto x) \leadsto (z \leadsto y),$
- (b7) if $x \le y$, then $z \to x \le z \to y$ and $z \leadsto x \le z \leadsto y$,
- (b8) $1 \rightarrow x = 1 \rightsquigarrow x = x$,
- (b9) $((x \to y) \leadsto y) \to y = x \to y, ((x \leadsto y) \to y) \leadsto y = x \leadsto y,$
- (b10) $x \to y \le (y \to x) \leadsto 1$,
- (b11) $x \rightsquigarrow y \leq (y \rightsquigarrow x) \rightarrow 1$,
- (b12) $(x \to y) \to 1 = (x \to 1) \leadsto (y \leadsto 1)$,
- (b13) $(x \leadsto y) \leadsto 1 = (x \leadsto 1) \to (y \to 1),$
- (b14) $x \to 1 = x \leadsto 1$.

REMARK. If $\mathcal{X}=(X,\leq,\rightarrow,\rightsquigarrow,1)$ is a pseudo-BCI-algebra, then, by (a3), (a4), (b3) and (b1), (X,\leq) is a poset with 1 as a maximal element.

The class of pseudo-BCI-algebras forms a quasivariety:

LEMMA 2.1. An algebra $\mathcal{X} = (X, \rightarrow, \rightsquigarrow, 1)$ of type (2, 2, 0) is a pseudo-BCI-algebra if and only if it satisfies the following identities and quasi-identity:

- (i) $(x \to y) \leadsto [(y \to z) \leadsto (x \to z)] = 1$,
- (ii) $(x \leadsto y) \to [(y \leadsto z) \to (x \leadsto z)] = 1$,
- (iii) $1 \to x = x$,
- (iv) $1 \rightsquigarrow x = x$,
- (v) $x \rightarrow y = 1$ & $y \rightarrow x = 1 \Rightarrow x = y$.

PROOF: Every pseudo-BCI-algebra obviously satisfies (i)–(v). Conversely, assume that an algebra \mathcal{X} satisfies (i)–(v). Putting x=1, y=1 and z=x in (i) and (ii) and using (iii) and (iv), we have

$$1 = (1 \leadsto 1) \to [(1 \leadsto x) \to (1 \leadsto x)] = x \to x$$

and

$$1 = (1 \rightarrow 1) \rightsquigarrow [(1 \rightarrow x) \rightsquigarrow (1 \rightarrow x)] = x \rightsquigarrow x.$$

So, (a3) is satisfied. Now, putting x = 1, y = x and z = y in (i) and (ii) we get, by (iii) and (iv),

$$1 = (1 \to x) \leadsto [(x \to y) \leadsto (1 \to y)] = x \leadsto [(x \to y) \leadsto y]$$

and

$$1 = (1 \leadsto x) \to [(x \leadsto y) \to (1 \leadsto y)] = x \to [(x \leadsto y) \to y].$$

Hence, (a2) is also satisfied. Further, if $x \to y = 1$, then, by (iv), $x \leadsto y = x \leadsto (1 \leadsto y) = x \leadsto [(x \to y) \leadsto y] = 1$, and analogously, if $x \leadsto y = 1$, then, by (iii), $x \to y = x \to (1 \to y) = x \to [(x \leadsto y) \to y] = 1$. Thus, $x \to y = 1$ iff $x \leadsto y = 1$. It is therefore easily seen that the relation \leq is defined by

$$x \le y$$
 iff $x \to y = 1$ iff $x \leadsto y = 1$

making the structure $(X, \leq, \rightarrow, \rightsquigarrow, 1)$ into a pseudo-BCI-algebra.

REMARK. Since pseudo-BCI-algebras include BCI-algebras, which are not closed under homomorphic images (see [12]), it follows that the quasivariety of pseudo-BCI-algebras is not a variety.

3. Pseudo-BCI-logic

In this section we present pseudo-BCI-logic, a non-commutative version of BCI-logic. Following Hájek's definition of his basic logic (see [4]), definition of pseudo-BCI-logic is as follows:

The formulas of pseudo-BCI-logic $(ps\mathcal{BCI}, \text{ for short})$ are built from propositional variables and the primitive connectives \rightarrow and \rightsquigarrow . The following formulas are the axioms of $ps\mathcal{BCI}$ (where α , β and γ are arbitrary formulas):

(B1)
$$(\alpha \to \beta) \to ((\beta \to \gamma) \leadsto (\alpha \to \gamma)),$$

(B2)
$$(\alpha \leadsto \beta) \to ((\beta \leadsto \gamma) \to (\alpha \leadsto \gamma)),$$

(C1)
$$(\alpha \to (\beta \leadsto \gamma)) \to (\beta \leadsto (\alpha \to \gamma)),$$

(C2)
$$(\alpha \leadsto (\beta \to \gamma)) \to (\beta \to (\alpha \leadsto \gamma)),$$

(I) $\alpha \to \alpha$.

The inference rules are:

(MP):
$$\frac{\alpha, \alpha \to \beta}{\beta}$$
,

(Imp1):
$$\frac{\alpha \to \beta}{\alpha \leadsto \beta}$$
,

(Imp2):
$$\frac{\alpha \leadsto \beta}{\alpha \to \beta}$$
.

REMARK. Using advanced methods and techniques of [1] it can be proved that the logic $ps\mathcal{BCI}$ is not algebraizable (particularly see Theorem 5.9 of [1]).

In order to be algebraizable, we have to extend pseudo-BCI-logic on the inference rule:

(Imp): $\frac{\alpha,\beta}{\alpha\to\beta}$.

The extended logic, pseudo-BCI'-logic (psBCI', for short) has the axioms: (B1), (B2), (C1), (C2) and (I), and the inference rules: (MP), (Imp1), (Imp2) and (Imp).

Next theorem shows the algebraizability of the logic $ps\mathcal{BCI}'$ (in the sense of [1]).

THEOREM 3.1. The logic $ps\mathcal{BCI}'$ is algebraizable with the set of equivalence formulas $\triangle = \{x \to y, y \to x\}$ and defining equation $x = x \to x$.

PROOF: Following the notation of [1], we write $\alpha \triangle \beta$ as an abbreviation of $\{\alpha \to \beta, \beta \to \alpha\}$ for any formulas α, β . In order to show that $ps\mathcal{BCI}'$ is algebraizable, by Theorem 4.7 of [1], we have to prove the following properties, for all formulas $\alpha, \beta, \gamma, \alpha_1, \beta_1$ (for the convenience we write \vdash instead of $\vdash_{ps\mathcal{BCI}'}$):

- (i) $\vdash \alpha \triangle \alpha$,
- (ii) $\alpha \triangle \beta \vdash \beta \triangle \alpha$,
- (iii) $\alpha \triangle \beta$, $\beta \triangle \gamma \vdash \alpha \triangle \gamma$
- (iv) $\alpha \triangle \beta$, $\alpha_1 \triangle \beta_1 \vdash (\alpha \rightarrow \alpha_1) \triangle (\beta \rightarrow \beta_1)$, $(\alpha \leadsto \alpha_1) \triangle (\beta \leadsto \beta_1)$,
- (v) $\alpha + \alpha \triangle (\alpha \rightarrow \alpha)$.
 - (i): It is immediate consequence of (I).
 - (ii): It is trivial, because $\alpha \triangle \beta = \beta \triangle \alpha$.
- (iii): By (B1), $\alpha \triangle \beta \vdash (\beta \to \gamma) \leadsto (\alpha \to \gamma)$. Hence, $\alpha \triangle \beta, \beta \triangle \gamma \vdash (\alpha \to \gamma)$
- γ). Now, replacing α and γ we get $\alpha \triangle \beta$, $\beta \triangle \gamma \vdash (\gamma \rightarrow \alpha)$. Thus (iii) holds.
- (iv): From (B1) and (Imp2) it follows $\alpha \triangle \beta \vdash (\alpha \to \alpha_1) \to (\beta \to \alpha_1)$ and $\alpha \triangle \beta \vdash (\beta \to \alpha_1) \to (\alpha \to \alpha_1)$. So,

$$\alpha \triangle \beta \vdash (\alpha \to \alpha_1) \triangle (\beta \to \alpha_1). \tag{1}$$

By (Imp1), $\alpha \triangle \beta \vdash (\alpha \leadsto \beta)$ and $\alpha \triangle \beta \vdash (\beta \leadsto \alpha)$. Hence, by (B2), $\alpha \triangle \beta \vdash (\alpha \leadsto \alpha_1) \to (\beta \leadsto \alpha_1)$ and $\alpha \triangle \beta \vdash (\beta \leadsto \alpha_1) \to (\alpha \leadsto \alpha_1)$. Thus,

$$\alpha \triangle \beta \vdash (\alpha \leadsto \alpha_1) \triangle (\beta \leadsto \alpha_1). \tag{2}$$

Further, by (B1), $\vdash (\beta \to \alpha_1) \to ((\alpha_1 \to \beta_1) \leadsto (\beta \to \beta_1))$ and $\vdash (\beta \to \beta_1) \to ((\beta_1 \to \alpha_1) \leadsto (\beta \to \alpha_1))$. Hence, by (C1), $\vdash (\alpha_1 \to \beta_1) \leadsto ((\beta \to \alpha_1) \to (\beta \to \beta_1))$ and $\vdash (\beta_1 \to \alpha_1) \leadsto ((\beta \to \beta_1) \to (\beta \to \alpha_1))$. Thus,

$$\alpha_1 \triangle \beta_1 \vdash (\beta \to \alpha_1) \triangle (\beta \to \beta_1).$$
 (3)

Similarly, by (B1) and (Imp1), $\vdash (\beta \leadsto \alpha_1) \leadsto ((\alpha_1 \leadsto \beta_1) \to (\beta \leadsto \beta_1))$ and $\vdash (\beta \leadsto \beta_1) \leadsto ((\beta_1 \leadsto \alpha_1) \to (\beta \leadsto \alpha_1))$. Hence, by (C2), $\vdash (\alpha_1 \leadsto \beta_1) \to ((\beta \leadsto \alpha_1) \leadsto (\beta \leadsto \beta_1))$ and $\vdash (\beta_1 \leadsto \alpha_1) \to ((\beta \leadsto \beta_1) \leadsto (\beta \leadsto \alpha_1))$. Thus, $\alpha_1 \triangle \beta_1 \vdash (\beta \leadsto \alpha_1) \leadsto (\beta \leadsto \beta_1)$ and $\alpha_1 \triangle \beta_1 \vdash (\beta \leadsto \beta_1) \leadsto (\beta \leadsto \alpha_1)$ and so, by (Imp2), $\alpha_1 \triangle \beta_1 \vdash (\beta \leadsto \alpha_1) \to (\beta \leadsto \beta_1)$ and $\alpha_1 \triangle \beta_1 \vdash (\beta \leadsto \beta_1) \to (\beta \leadsto \alpha_1)$. Therefore,

$$\alpha_1 \triangle \beta_1 \vdash (\beta \leadsto \alpha_1) \triangle (\beta \leadsto \beta_1). \tag{4}$$

Finally, by (iii), (1) and (3), we obtain

$$\alpha \triangle \beta, \alpha_1 \triangle \beta_1 \vdash (\alpha \rightarrow \alpha_1) \triangle (\beta \rightarrow \beta_1)$$

and similarly, by (iii), (2) and (4) we get

$$\alpha \triangle \beta, \alpha_1 \triangle \beta_1 \vdash (\alpha \leadsto \alpha_1) \triangle (\beta \leadsto \beta_1)$$

which end the proof of (iv).

- (v): To prove (v) we must verify:
- (a) $\alpha \vdash \alpha \rightarrow (\alpha \rightarrow \alpha)$,
- (b) $\alpha \vdash (\alpha \to \alpha) \to \alpha$,
- (c) $\alpha \to (\alpha \to \alpha), (\alpha \to \alpha) \to \alpha \vdash \alpha$.
 - (a): We have it by (I) and (Imp).
- (b): By (i) and (Imp1), $\vdash (\alpha \to \alpha) \leadsto (\alpha \to \alpha)$, so by (C2), $\vdash \alpha \to ((\alpha \to \alpha) \leadsto \alpha)$. Hence, $\alpha \vdash (\alpha \to \alpha) \leadsto \alpha$ and, by (Imp2), $\alpha \vdash (\alpha \to \alpha) \to \alpha$. Thus (b) holds.
- (c): By (i) and (Imp1) we have $\vdash ((\alpha \to \alpha) \to \alpha) \leadsto ((\alpha \to \alpha) \to \alpha)$, which implies, by (C2), $\vdash (\alpha \to \alpha) \to ((\alpha \to \alpha) \to \alpha) \leadsto \alpha$. Since, by (i), $\vdash \alpha \to \alpha$, it follows, by (MP), $\vdash ((\alpha \to \alpha) \to \alpha) \leadsto \alpha$ and, by (Imp2), $\vdash ((\alpha \to \alpha) \to \alpha) \to \alpha$. Thus, (c) also holds.

Therefore, the logic $ps\mathcal{BCI}'$ is algebraizable.

The equivalent quasivariety semantics (see [1]) for the logic $ps\mathcal{BCI}'$ is a quasivariety \mathcal{I} of algebras (X, \to, \leadsto) of type (2, 2) satisfying certain identities and quasi-identities, which are derived from the axioms and inference rules of $ps\mathcal{BCI}'$ using $\Delta = \{x \to y, y \to x\}$ and $x = x \to x$, such that

(i) for every set of formulas Σ and every formula α ,

$$\Sigma \vdash_{ps\mathcal{BCI'}} \alpha \text{ iff } \{\beta = \beta \to \beta : \beta \in \Sigma\} \models_{\mathcal{I}} \alpha = \alpha \to \alpha,$$

(ii) for every formulas α, β , $\alpha = \beta = |=_{\mathcal{I}} \{\alpha \to \beta = (\alpha \to \beta) \to (\alpha \to \beta), \beta \to \alpha = (\beta \to \alpha) \to (\beta \to \alpha)\}.$

Notice that $\models_{\mathcal{I}} \alpha \to \beta = (\alpha \to \beta) \to (\alpha \to \beta)$ iff $\vdash_{ps\mathcal{BCI'}} \alpha \to \beta$, and similarly, $\models_{\mathcal{I}} \beta \to \alpha = (\beta \to \alpha) \to (\beta \to \alpha)$ iff $\vdash_{ps\mathcal{BCI'}} \beta \to \alpha$. Thus,

$$\models_{\mathcal{I}} \alpha = \beta$$
 iff $(\vdash_{ps\mathcal{BCI}'} \alpha \to \beta \text{ and } \vdash_{ps\mathcal{BCI}'} \beta \to \alpha)$ iff $\vdash_{ps\mathcal{BCI}'} \alpha \triangle \beta$.

Next theorem is the main result of the paper and it says that the class of pseudo-BCI-algebras forms an algebraic semantics for the logic psBCI'.

Theorem 3.2. The quasivariety of pseudo-BCI-algebras is definitionally equivalent to the equivalent quasivariety semantics for the logic psBCI'.

PROOF: First, note that by (I) and (Imp) we have $\vdash (\alpha \to \alpha) \to (\beta \to \beta)$ and $\vdash (\beta \to \beta) \to (\alpha \to \alpha)$. Thus, $\vdash (\alpha \to \alpha) \triangle (\beta \to \beta)$. Analogously, using additionally (Imp1), we obtain that $\vdash (\alpha \to \alpha) \triangle (\alpha \leadsto \alpha)$ and $\vdash (\alpha \leadsto \alpha) \triangle (\beta \leadsto \beta)$. Hence, the equivalent algebraic semantics $\mathcal I$ satisfies the identities $x \to x = y \to y = y \leadsto y$. Thus, every algebra (X, \to, \leadsto) in $\mathcal I$ possesses a constant 1 such that $1 = x \to x = x \leadsto x$ for all $x \in X$. Let $\mathcal I^*$ be the class consisting of algebras $(X, \to, \leadsto, 1)$ such that (X, \to, \leadsto) belongs to $\mathcal I$. Using Theorem 2.17 of [1], we get that the quasivariety $\mathcal I^*$ is axiomatized as follows:

- $(1) (x \to y) \to ((y \to z) \leadsto (x \to z)) = 1,$
- $(2) (x \leadsto y) \to ((y \leadsto z) \to (x \leadsto z)) = 1,$
- $(3) \ (x \to (y \leadsto z)) \to (y \leadsto (x \to z)) = 1,$
- $(4) \ (y \leadsto (x \to z)) \to (x \to (y \leadsto z)) = 1,$
- (5) $x \to x = 1$,
- $(6) \ x=1 \ \& \ x\to y=1 \ \Rightarrow \ y=1,$
- (7) $x \to y = 1 \implies x \leadsto y = 1$,
- (8) $x \rightsquigarrow y = 1 \implies x \rightarrow y = 1$,
- (9) $x = 1 \& y = 1 \Rightarrow x \to y = 1$,
- (10) $x \rightarrow y = 1 \& y \rightarrow x = 1 \Rightarrow x = y$.

It is obvious that every pseudo-BCI-algebra satisfies (1)–(10). Hence, the quasivariety of pseudo-BCI-algebras is included in \mathcal{I}^* .

Conversely, let $(X, \to, \leadsto, 1)$ be an algebra belonging to \mathcal{I}^* . From Lemma 2.1 it suffices to show the following equations

$$1 \to x = x$$
 and $1 \leadsto x = x$.

From (3), (4) and (10) we get the following identity

$$x \to (y \leadsto z) = y \leadsto (x \to z).$$

Hence, by (5) and (7), $1 \rightarrow ((1 \rightarrow x) \rightsquigarrow x) = (1 \rightarrow x) \rightsquigarrow (1 \rightarrow x) = 1$ and $1 \rightsquigarrow ((1 \rightsquigarrow x) \rightarrow x) = (1 \rightsquigarrow x) \rightarrow (1 \rightsquigarrow x) = 1$. Thus, by (6) and (7), $(1 \rightarrow x) \rightsquigarrow x = 1$ and $(1 \rightsquigarrow x) \rightarrow x = 1$, and so, by (8), $(1 \rightarrow x) \rightarrow x = 1$ and $(1 \rightsquigarrow x) \rightarrow x = 1$. On the other hand, by (5), (7) and (8), $x \rightarrow (1 \rightarrow x) = x \rightsquigarrow (1 \rightarrow x) = 1 \rightarrow (x \rightsquigarrow x) = 1 \rightarrow 1 = 1$ and $x \rightarrow (1 \rightsquigarrow x) = 1 \rightsquigarrow (x \rightarrow x) = 1 \rightsquigarrow 1 = 1$. Thus, by (10), $1 \rightarrow x = x$ and $1 \rightsquigarrow x = x$.

Therefore, \mathcal{I}^* is precisely the quasivariety of all pseudo-BCI-algebras.

4. Conclusion

The pseudo-BCI-logic is a non-commutative version of the BCI-logic – it has two different implications \rightarrow and \rightsquigarrow . In order to be algebraizable we have to extend it on one inference rule (Imp). This leads us to formulate and prove the main result of the paper that pseudo-BCI-algebras are an algebraic counterpart of this extended logic (Theorem 3.2). We think this logic is so close to original one that it is worth studying its algebraic models – pseudo-BCI-algebras.

References

- [1] W. J. Blok and D. Pigozzi, Algebraizable logics, Memoirs of the Am. Math. Soc., no. 396, Providence, 1989.
- [2] H. B. Curry, R. Feys and W. Craig, Combinatory logic, Volume 1, North Holland, Amsterdam, 1958.
- [3] W. A. Dudek and Y. B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008), pp. 187–190.
- [4] P. Hájek, Observations on non-commutative logic, Soft Comput. 8 (2003), pp. 38–43.

П

Pseudo-BCI-Logic 41

[5] K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Academy 42 (1966), pp. 26–29.

- [6] Y. B. Jun, H. S. Kim and J. Neggers, On pseudo-BCI ideals of pseudo BCIalgebras, Mat. Vesnik 58 (2006), pp. 39–46.
- [7] J. K. Kabziński, BCI-algebras from the point of view of logic, Bull. Sect. Logic, Polish Acad. Sci., Inst. Philos. and Socio., 12 (1983), pp. 126–129.
- [8] J. Kühr, Pseudo-BCK-algebras and related structures, Univ. Palackého v Olomouci, 2007.
- [9] K. J. Lee and C. H. Park, Some ideals of pseudo-BCI algebras, J. Appl. Math. & Informatics 27 (2009), pp. 217–231.
- [10] C. A. Meredith and A. N. Prior, Notes on the axiomatics of the propositional calculus, Notre Dame J. Formal Logic 4 (1963), pp. 171–187.
- [11] A. N. Prior, Formal logic. Second Edition. Clarendon Press, Oxford, 1962.
- [12] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983), pp. 211–213.

Institute of Mathematics and Computer Science The John Paul II Catholic University of Lublin Konstantynów 1H, 20-708 Lublin, Poland e-mail: gdymek@o2.pl

Department of Logic The John Paul II Catholic University of Lublin Al. Racławickie 14, 20-950 Lublin, Poland e-mail: akozdym@kul.lublin.pl