CLOSURE EXTENDED DOUBLE STONE ALGEBRAS

Abstract

The variety **CDS** of closure extended double Stone algebras consists of the algebras $(L; \wedge, \vee, ^*, ^+, ^\circ, 0, 1)$ of type (2, 2, 1, 1, 1, 0, 0) where $(L; \wedge, \vee, ^*, ^+, 0, 1)$ is a double Stone algebra, $^\circ$ is a lattice endomorphism on L with $x \leq x^\circ = x^{\circ\circ}$ and the operations $x \mapsto x^*, x \mapsto x^+$ and $x \mapsto x^\circ$ are linked by the identities $x^{*\circ} = x^{\circ*}$ and $x^{+\circ} = x^{\circ+}$. In this paper, we characterize congruences on a **CDS**-algebra, and show that there are precisely seven non-isomorphic subdirectly irreducible members in the class of these algebras and give a complete description of them.

Keywords: double Stone algebra, congruence, subdirectly irreducible

1991 Mathematics Subject Classification 06D15

1. Introduction

A (distributive) p-algebra (or lattice with pseudocomplementation) is a (distributive) lattice L with a smallest element 0 together with a mapping $^*: L \to L$ such that $x \wedge y = 0 \iff y \leq x^*$. A dual (distributive) p-algebra is a (distributive) lattice L with a biggest element 1 together with a mapping $^+: L \to L$ such that $x \vee y = 1 \iff y \geq x^+$. A (distributive) double p-algebra $(L; \wedge, \vee, ^*, ^+, 0, 1)$ (or lattice with double pseudocomplementation) is a lattice L such that $(L; \wedge, \vee, ^*, 0, 1)$ is (distributive) p-algebra and $(L; \wedge, \vee, ^+, 0, 1)$ is a dual (distributive) p-algebra. A special subclass of class of distributive double p-algebras $(L; ^*, ^*)$ is the class of double Stone

algebras in which the unary operations * and + are satisfied the double Stone identities:

$$x^* \vee x^{**} = 1$$
 and $x^+ \wedge x^{++} = 0$.

For a double Stone algebra $(L; ^*, ^+)$, in what follows we write $L^* = \{x^* \mid x \in L\}$ and $L^+ = \{x^+ \mid x \in L\}$. The following rules of computation in a double Stone algebra $(L; ^*, ^+)$ will be needed and can easily be proved:

- $(1) (\forall x \in L) x^* \le x^+;$
- (2) $(\forall x \in L) \ x^{+*} = x^{++} \le x \le x^{**} = x^{*+};$
- (3) $(\forall x, y \in L)$ $(x \land y)^* = x^* \lor y^*$ and $(x \lor y)^+ = x^+ \land y^+$;
- (4) $(\forall x \in L) \ x^* \lor x^{**} = 1 \text{ and } x^+ \land x^{++} = 0;$
- (5) $L^* = L^+$.

For the basic properties of distributive double p-algebras and double Stone algebras we refer the reader to [3] and [4].

In the previous paper [5], T. S. Blyth and Jie Fang introduced the notion of the extended Ockham algebras. Precisely, an *extended Ockham algebra* $L \equiv (L; \land, \lor, f, \circ, 0, 1)$ is a bounded distributive lattice L with two unary operations f and \circ such that

- (1) f is a dual lattice endomorphism with f(1) = 0 and f(0) = 1;
- (2) $^{\circ}$ is a lattice endomorphism with $1^{\circ} = 1$ and $0^{\circ} = 0$;
- (3) f and \circ commute.

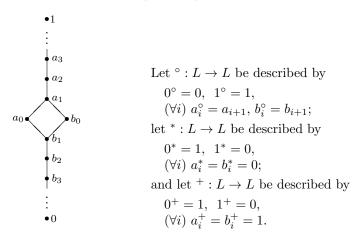
Here we shall consider another particular class of algebras that contains double Stone algebras. This subvariety is defined as follows.

DEFINITION. By an extended double Stone algebra $L \equiv (L; \land, \lor, ^*, ^+, ^\circ, 0, 1)$ we mean a bounded distributive lattice L together with three unary operations * , $^+$ and $^\circ$ such that:

- (1) $(L;^*,^+)$ is a double Stone algebra;
- (2) $^{\circ}$ is a lattice endomorphism with $1^{\circ} = 1$, $0^{\circ} = 0$;
- (3) $x^{\circ *} = x^{*\circ}$ and $x^{\circ +} = x^{+\circ}$.

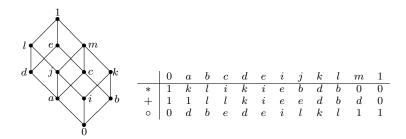
An extended double Stone algebra $L \equiv (L; \land, \lor, ^*, ^+, ^\circ)$ in which $x \le x^\circ = x^{\circ\circ} \ (\forall x \in L)$ is said to be *closure*. We shall denote by **CDS** the variety of closure extended double Stone algebras.

EXAMPLE 1. Consider the algebra $(L; *, +, \circ)$ depicted as follows:



Clearly, (L; *, +) is a double Stone algebra and \circ is lattice endomorphism. We see that for $x \in L$, $x^{*\circ} = x^{\circ*}$, $x^{+\circ} = x^{\circ+}$. Thus $(L; *, +, \circ)$ is an extended double Stone algebra.

Example 2. Consider the algebra $(L;^*,^+,^\circ)$ given as follows:



By a simple calculation we can see that $(L;^*,^+,^\circ)$ is a **CDS**-algebra.

2. Congruences

For a **CDS**-algebra $(L; ^*, ^+, ^\circ)$, in what follows we write $L^\circ = \{x^\circ \mid x \in L\} = \{x = x^\circ, x \in L\}$. Clearly, L° is a subalgebra of L. We begin with the following basic result.

THEOREM 1. If $(L; *, +, \circ) \in \mathbf{CDS}$ then we have the following properties:

- (1) $(\forall x \in L) \ x^* = x^{*\circ} = x^{\circ*}, \ x^+ = x^{+\circ} = x^{\circ+} \ and \ L^* = L^+ \subseteq L^{\circ};$
- (2) $(\forall x \in L) \ x^{++} \le x \le x^{\circ} \le x^{**};$
- (3) $(\forall x \in L) \ x^* \neq x^\circ \ and \ x^+ \neq x^\circ;$
- (4) $(\forall x \in L) \ x^{\circ} = 1 \Rightarrow x^{*} = x^{+} = 0.$

PROOF: (1) For any $x \in L$, since $x \le x^{\circ}$ gives $x^{*} \ge x^{*\circ}$. On the other hand, $x^{*} \le x^{*\circ}$ and so $x^{*} = x^{*\circ} = x^{\circ*}$. Hence, we obtain $L^{*} \subseteq L^{\circ}$. Similarly, we can obtain $x^{+} = x^{+\circ} = x^{\circ+}$ for any $x \in L$.

- (2) Since $x \le x^{**}$, $x^{\circ} \le x^{\circ **} = x^{**}$ by (1) for every $x \in L$. Hence, $x^{++} \le x \le x^{\circ} \le x^{**}$.
- (3) Suppose that $x^* = x^{\circ}$ for any $x \in L$. By (1) and (2), it follows the contradiction $x^* = x^{**}$. In a similar way, we must have $x^+ \neq x^{\circ}$.

(4) It is obvious from (1).
$$\Box$$

We shall now be concerned with the congruences on a CDS-algebra.

By a congruence on a CDS-algebra $(L; ^*, ^+, ^\circ)$ we shall mean a lattice congruence θ such that

$$(x,y) \in \theta \Rightarrow (x^*,y^*) \in \theta, (x^+,y^+) \in \theta \text{ and } (x^\circ,y^\circ) \in \theta.$$

Through what follows, for a **CDS**-algebra $(L; {}^*, {}^+, {}^\circ)$ we shall denote by $\operatorname{Con}_{lat} L$ the lattice of lattice congruences of L; and by $\operatorname{Con} L$ the lattice of congruences of $(L; {}^*, {}^+, {}^\circ)$. The equality relation and the universal relation on L are always denoted by ω and ι , respectively.

If $(L; {}^*, {}^+)$ is a double Stone algebra, then the equivalence relations G^* , G^+ and G on L given by

$$(x,y) \in G^* \iff x^* = y^*,$$

$$(x,y) \in G^+ \iff x^+ = y^+$$

and

$$(x,y) \in G \iff x^* = y^*, x^+ = y^+$$

are determination congruences on L.

In a CDS-algebra $(L; *, +, \circ)$, we define an equivalence relation Φ on L given by

$$(x,y) \in \Phi \iff x^{\circ} = y^{\circ}.$$

Clearly, Φ is a congruence on L, $\Phi \leq G^*$, $\Phi \leq G^+$ and $\Phi \leq G^* \wedge G^+ = G$.

The following result is an analogous form of [6, Theorem 2]

THEOREM 2. If $(L; *, +, \circ) \in \mathbf{CDS}$ and $\alpha, \beta \in \mathrm{Con} L$ then $\alpha|_{L^{\circ}} = \beta|_{L^{\circ}} \iff \alpha \vee \Phi = \beta \vee \Phi.$

PROOF: \Rightarrow : Suppose that $\alpha|_{L^{\circ}} = \beta|_{L^{\circ}}$ and $(x,y) \in \alpha \vee \Phi$. Then there exist elements $x = x_0, x_1, ..., x_n = y$ of L such that

$$x = x_0 \equiv x_1 \equiv \dots \equiv x_n = y$$

where $(x_i, x_{i+1}) \in \alpha$ or $(x_i, x_{i+1}) \in \Phi$. The latter gives then $x_i^{\circ} = x_{i+1}^{\circ}$. Hence it follows that $(x^{\circ}, y^{\circ}) \in \alpha$. Obviously, we have $(x^{\circ}, y^{\circ}) \in \alpha|_{L^{\circ}} = \beta|_{L^{\circ}}$, it follows that $(x, y) \in \beta \vee \Phi$ and so $\alpha \vee \Phi \leq \beta \vee \Phi$. The reverse inclusion is established similarly.

 \Leftarrow : Suppose that $\alpha \vee \Phi = \beta \vee \Phi$ and let $x,y \in L^{\circ}$ be such that $(x,y) \in \alpha$. Hence $(x,y) \in \alpha \vee \Phi = \beta \vee \Phi$. Then there exist elements $x = x_0, x_1, ..., x_n = y$ of L such that

$$x = x_0 \equiv x_1 \equiv \dots \equiv x_n = y$$

where $(x_i, x_{i+1}) \in \beta$ or $(x_i, x_{i+1}) \in \Phi$. The latter gives then $x_i^{\circ} = x_{i+1}^{\circ}$. Thus $(x^{\circ}, y^{\circ}) \in \beta$. Since $x, y \in L^{\circ}$ we have $x = x^{\circ}$ and $y = y^{\circ}$. Hence $(x, y) \in \beta$ and so $\alpha|_{L^{\circ}} \leq \beta|_{L^{\circ}}$. The reverse inclusion is established similarly.

Let $(L;^*,^+,^\circ) \in \mathbf{CDS}$ and $a,b \in L$ with $a \leq b$. We shall denote by $\theta(a,b)$ the principal congruence generated by $\{a,b\}$, i.e. the smallest congruence on $(L;^*,^+,^\circ)$ that identifies a and b. The corresponding principal lattice congruence will be denoted by $\theta_{lat}(a,b)$. We now give a description on the principal congruences of a \mathbf{CDS} -algebra as follows.

THEOREM 3. Let $(L; *, +, \circ) \in \mathbf{CDS}$ and $a, b \in L$ with $a \leq b$. Then $(\star) \qquad \theta(a, b) = \theta_{lat}(a, b) \vee \theta_{lat}(a^{\circ}, b^{\circ}) \vee \theta_{lat}(b^{*}, a^{*}) \vee \theta_{lat}(b^{+}, a^{+}).$

PROOF: Let $\varphi(a,b)$ denote the right side of the equality (\star) . Observe that $(a,b) \in \theta(a,b)$ gives $(a^{\circ},b^{\circ}) \in \theta(a,b)$, $(a^{*},b^{*}) \in \theta(a,b)$ and $(a^{+},b^{+}) \in \theta(a,b)$. Thus we have $\varphi(a,b) \leq \theta(a,b)$. To see the reverse inequality, it suffices to show that $\varphi(a,b)$ preserve the unary operations * , $^{+}$ and $^{\circ}$. For doing so, we need only observe the following facts.

ř

(1) If $(x, y) \in \theta_{lat}(a, b)$, then $(x^{\circ}, y^{\circ}) \in \theta_{lat}(a^{\circ}, b^{\circ})$, $(x^{*}, y^{*}) \in \theta_{lat}(b^{*}, a^{*})$ and $(x^{+}, y^{+}) \in \theta_{lat}(b^{+}, a^{+})$.

Suppose that $(x, y) \in \theta_{lat}(a, b)$. Then $x \wedge a = y \wedge a$ and $x \vee b = y \vee b$. Thus we have $x^{\circ} \wedge a^{\circ} = y^{\circ} \wedge a^{\circ}$ and $x^{\circ} \vee b^{\circ} = y^{\circ} \vee b^{\circ}$, and so $(x^{\circ}, y^{\circ}) \in \theta_{lat}(a^{\circ}, b^{\circ})$. Similarly, we have $(x^{*}, y^{*}) \in \theta_{lat}(b^{*}, a^{*})$ and $(x^{+}, y^{+}) \in \theta_{lat}(b^{+}, a^{+})$.

By a similar argument as that of (1), and noting that $(L^*; *)$ is boolean, $x^* = x^{*\circ} = x^{\circ*}$ and $x^+ = x^{+\circ} = x^{\circ+}$, we can have the following:

- (2) If $(x, y) \in \theta_{lat}(a^{\circ}, b^{\circ})$, then $(x^{\circ}, y^{\circ}) \in \theta_{lat}(a^{\circ}, b^{\circ})$, $(x^{*}, y^{*}) \in \theta_{lat}(b^{*}, a^{*})$ and $(x^{+}, y^{+}) \in \theta_{lat}(b^{+}, a^{+})$;
 - (3) If $(x, y) \in \theta_{lat}(b^*, a^*)$, then $(x^{\circ}, y^{\circ}), (x^*, y^*)$ and $(x^+, y^+) \in \theta_{lat}(b^*, a^*)$;
- (4) If $(x, y) \in \theta_{lat}(b^+, a^+)$, then $(x^{\circ}, y^{\circ}), (x^*, y^*)$ and $(x^+, y^+) \in \theta_{lat}(b^+, a^+)$. Then we have $\varphi(a, b)$ is a congruence on L.

We therefore have from the observations above that $\varphi(a,b)=\theta(a,b).$

By Theorem 3, the following corollary is immediate.

COROLLARY 1. If $(L; *, +, \circ) \in \mathbf{CDS}$ and $a, b \in L$ with $a \leq b$. Then we have the following properties:

- (1) If $(a,b) \in G^*$, then $\theta(a,b) = \theta_{lat}(a,b) \vee \theta_{lat}(a^{\circ},b^{\circ}) \vee \theta_{lat}(b^+,a^+)$;
- (2) If $(a,b) \in G^+$, then $\theta(a,b) = \theta_{lat}(a,b) \vee \theta_{lat}(a^{\circ},b^{\circ}) \vee \theta_{lat}(b^*,a^*)$;
- (3) If $(a,b) \in G$, then $\theta(a,b) = \theta_{lat}(a,b) \vee \theta_{lat}(a^{\circ},b^{\circ})$;
- (4) If $(a,b) \in \Phi$, then $\theta(a,b) = \theta_{lat}(a,b)$.

THEOREM 4. Let $(L;^*,^+,^\circ) \in \mathbf{CDS}$ and $a, b \in L$ with $a \leq b$. Then

$$\theta(a,b) = \theta_{lat}(a,b) \vee \theta_{lat}((a^{\circ} \vee b^{*}) \wedge b^{+}, (b^{\circ} \vee a^{*}) \wedge a^{+}).$$

PROOF: Let $\varphi = \theta_{lat}(a,b) \vee \theta_{lat}((a^{\circ} \vee b^{*}) \wedge b^{+}, (b^{\circ} \vee a^{*}) \wedge a^{+})$. It is obvious that $\varphi \leq \theta(a,b)$ by Theorem 3. Observe that $(a^{\circ} \vee b^{*}) \wedge b^{+} \stackrel{\varphi}{=} (b^{\circ} \vee a^{*}) \wedge a^{+}$ implies that $a^{\circ} \vee b^{*} \stackrel{\varphi}{=} (a^{\circ} \vee b^{*}) \vee [(b^{\circ} \vee a^{*}) \wedge a^{+}] = (a^{\circ} \vee b^{\circ*}) \vee [(b^{\circ} \vee a^{\circ*}) \wedge a^{\circ*}] = b^{\circ} \vee a^{*}$ by Theorem 1(1), whence $b^{\circ} \stackrel{\varphi}{=} b^{\circ} \wedge (a^{\circ} \vee b^{*}) = a^{\circ}$ and $a^{*} \stackrel{\varphi}{=} a^{*} \wedge (a^{\circ} \vee b^{*}) = b^{*}$. Also, we have $b^{+} \stackrel{\varphi}{=} b^{+} \vee [(b^{\circ} \vee a^{*}) \wedge a^{+}] = a^{+}$. Thus we have $\theta(a,b) \leq \varphi$. Consequently, $\theta(a,b) = \varphi$.

3. Subdirectly irreducible algebras

We shall now consider the subdirectly irreducible algebras in **CDS**. An algebra L is *subdirectly irreducible*, if $\operatorname{Con} L \setminus \{\omega\}$ has a smallest element, called the *monolith* of $\operatorname{Con} L$. Dually, a congruence relation is called the *comonolith* if it is the largest element of $\operatorname{Con} L \setminus \{\iota\}$. In the special case when $\operatorname{Con} L = \{\omega, \iota\}$, the algebra L is said to be *simple*.

THEOREM 5. If $(L; *, +, \circ) \in \mathbf{CDS}$ is subdirectly irreducible, then $L^* = L^+ = \{0, 1\}$.

PROOF: Suppose that $|L^*| \ge 3$. Then there exists $a^* \in L^*$ with $0 < a^* < 1$. Thus it follows by Theorem 3 the contradiction that

$$\theta(0, a^*) \wedge \theta(a^*, 1) = \theta_{lat}(0, a^*) \wedge \theta_{lat}(a^*, 1) = \omega.$$

COROLLARY 2. Let $(L; *, +, \circ)$ be a subdirectly irreducible **CDS**-algebra, then we have the following properties:

- (1) $(\forall x \in L) \ x \neq 0 \Rightarrow x^* = 0;$
- (2) $(\forall x \in L) \ x \neq 1 \Rightarrow x^+ = 1.$

PROOF: (1) Suppose that $x \neq 0$ for any $x \in L$, since $x \wedge x^* = 0$, by Theorem 5 we must have $x^* = 0$.

COROLLARY 3. If $(L;^*,^+,^\circ)$ is a subdirectly irreducible **CDS**-algebra, then L has at most one atom (coatom).

PROOF: If $a, b \in L$ with $a \neq b$ are atoms of L then a > 0 and b > 0 with $a \wedge b = 0$. This is impossible; for otherwise, it follows from the Corollary 2(1) the contradiction that $1 = 0^* = (a \wedge b)^* = a^* \vee b^* = 0 \vee 0 = 0$. Thus L has at most one atom.

In a similar way, we can show that L has at most one coatom. \square

THEOREM 6. If $(L;^*,^+,^\circ) \in \mathbf{CDS}$ is subdirectly irreducible, then we have the following statements:

- (1) Every Φ -class contains at most two elements;
- (2) Every G-class contains at most two elements of L° .

PROOF: (1) If there exist $a, b, c \in L$ with a < b < c such that $a, b, c \in [x]\Phi$ for some $x \in L$, then by Corollary 1, $\theta(a, b) \wedge \theta(b, c) = \theta_{lat}(a, b) \wedge \theta_{lat}(b, c) = \omega$. This contradiction shows that (1) holds.

(2) The argument is similar to that of (1). \Box

The following result is similar to [2, Theorem 3.16].

THEOREM 7. If $(L; *, +, \circ) \in \mathbf{CDS}$ is subdirectly irreducible and $\Phi \neq \omega$, then Φ is the monolith of Con L.

PROOF: Let α be the monolith of Con L. Then $\omega \prec \alpha \leq \Phi$, and so there exist $a,b \in L$ with $a \prec b$ such that $\theta(a,b) = \alpha$. Thus by Corollary 1, we have $\alpha = \theta(a,b) = \theta_{lat}(a,b)$. Since α is a principal lattice congruence it has a complement β in $\operatorname{Con}_{lat} L$. Then the lattice congruence $\beta \land \Phi \in \operatorname{Con} L$, and so $\beta \land \Phi = \omega$ or $\beta \land \Phi \geq \alpha$. The latter gives the contradiction that $\alpha = \alpha \land \beta \land \Phi = \alpha \land \beta = \omega$. Thus we must have $\beta \land \Phi = \omega$. But $\alpha \lor \beta = \iota$ and $\alpha \leq \Phi$ give $\beta \lor \Phi = \iota$. Hence Φ is the complement of β in $\operatorname{Con}_{lat} L$ and whence $\alpha = \Phi$. Thus Φ is the monolith of $\operatorname{Con} L$.

THEOREM 8. If $(L; *, +, \circ) \in \mathbf{CDS}$ is subdirectly irreducible, then $|L^{\circ}| \leq 4$.

PROOF: Suppose that L is subdirectly irreducible and let $|L^{\circ}| \geqslant 5$. Then L° must contain either an 5-element chain or two non-comparable elements. If, on the one hand, there exists an 5-element chain in L° , say 0 < a < b < c < 1 with $a,b,c \in L^{\circ}$, whence it follows by Theorem 3 the contradiction that

$$\theta(a,b) \wedge \theta(b,c) = \theta_{lat}(a,b) \wedge \theta_{lat}(b,c) = \omega.$$

If, on the other hand, there exist $a,b \in L^{\circ}$ such that a and b are non-comparable, then by Corollary 3 we must have $a \land b \neq 0$ and $a \lor b \neq 1$. It follows from Corollary 1 and Corollary 2 the contradiction that

$$\theta(a \wedge b, a) \wedge \theta(a \wedge b, b) = \theta_{lat}(a \wedge b, a) \wedge \theta_{lat}(a \wedge b, b) = \omega.$$

It therefore follows from the above observations that $|L^{\circ}| \leq 4$.

COROLLARY 4. Let $(L;^*,^+,^\circ) \in \mathbf{CDS}$ be subdirectly irreducible. Then L° is subdirectly irreducible.

PROOF: Since $|L^{\circ}| \leq 4$ by Theorem 8, we observe the following three conditions:

- (1) $L^{\circ} = \{0, 1\}$. Clearly, Con $L^{\circ} = \{\omega, \iota\}$ and so L° is simple.
- (2) $L^{\circ} = \{0, a, 1\}$ with 0 < a < 1. In this case, by Corollary 2, we have $\operatorname{Con} L^{\circ} = \{\omega, \iota\}$ and so L° is simple.
- (3) $L^{\circ} = \{0, a, b, 1\}$ with 0 < a < b < 1. In this case, we obtain by Corollary 2 again that Con L° is a chain: $\omega \prec \theta(a, b) = \theta_{lat}(a, b) \prec \iota$.

Hence we obtain that L° is subdirectly irreducible.

COROLLARY 5. If $(L; *, +, \circ) \in \mathbf{CDS}$ is subdirectly irreducible then $|L| \leq 6$.

PROOF: Since, by the Theorem 6(1) and Theorem 8, $L = [0]\Phi \cup [1]\Phi \cup [a]\Phi \cup [b]\Phi$ for some $a, b \in L$ and noting that $[0]\Phi = \{0\}$ and $[1]\Phi = \{1\}$, it then follows $|L| \leq 6$.

COROLLARY 6. If $(L; *, +, \circ) \in \mathbf{CDS}$ is subdirectly irreducible then $|[x]G| \leq 4$ for some $x \in L \setminus \{0, 1\}$.

PROOF: Since, by the Theorem 5 and Corollary 2, $L = [x]G \cup \{0,1\}$ for some $x \in L \setminus \{0,1\}$. It then follows $|[x]G| \le 4$ by Corollary 5.

THEOREM 9. Let $(L; *, +, \circ) \in \mathbf{CDS}$ be subdirectly irreducible. Then G is the comonolith of Con L.

PROOF: Suppose now that $\varphi \in \text{Con } L$ is such that $\varphi \nleq G$. Then there exist $a,b \in L$ with $(a,b) \in \varphi$ but $(a,b) \not\in G$. Thus $(a^*,b^*) \in \varphi$ and $(a^+,b^+) \in \varphi$. By Theorem 5, we have $\{a^*,b^*\} \subseteq \{0,1\}$ and $\{a^+,b^+\} \subseteq \{0,1\}$. Since $(a,b) \not\in G$, we must have $a^* \neq b^*$ or $a^+ \neq b^+$. Thus $\{a^*,b^*\} = \{0,1\}$ or $\{a^+,b^+\} = \{0,1\}$. It follows that $(0,1) \in \varphi$ whence $\varphi = \iota$. Consequently, G is the comonolith of Con L.

We now consider the structure of the lattice $\operatorname{Con} L$ of a subdirectly irreducible $\operatorname{\mathbf{CDS}}$ -algebra.

THEOREM 10. Let $(L; *, +, \circ) \in \mathbf{CDS}$ be subdirectly irreducible. Then

- (1) If $G^* = \omega$ or $G^+ = \omega$ then $\operatorname{Con} L = \{\omega, \iota\}$, namely, L is simple;
- (2) If $\Phi = \omega$ and $G \neq \omega$ then Con L is the chain: $\omega \prec G \prec \iota$;
- (3) If $\Phi \neq \omega$ then Con L is the chain: $\omega \prec \Phi \leq G \prec \iota$.

PROOF: (1) Suppose that $G^* = \omega$. Then for any $x \in L$, we have $x = x^{**}$. It follows that $L = L^*$, and so we have by Theorem 5, L is simple. Thus we have Con $L = \{\omega, \iota\}$. Similarly, if $G^+ = \omega$ we also obtain L is simple.

- (2) Suppose that $\Phi = \omega$ and $G \neq \omega$. Then by Theorem 9 we have G is the comonolith of Con L. By the similar method to Theorem 7, we obtain G is the monolith of Con L. Hence, Con L is the chain: $\omega \prec G \prec \iota$.
- (3) Suppose that $\Phi \neq \omega$. We have $[\Phi, \iota] \simeq \operatorname{Con} L/\Phi \simeq \operatorname{Con} L^{\circ}$ where L° is subdirectly irreducible by Corollary 4. Now if $x, y \in L^{\circ}$ then $x = x^{\circ}$ and $y = y^{\circ}$. Since $\Phi|_{L^{\circ}} = \omega$ then by (2) we have $\operatorname{Con} L^{\circ}$ is the chain: $\omega|_{L^{\circ}} \preceq G|_{L^{\circ}} \prec \iota|_{L^{\circ}}$. It follows by the congruence extension property and Theorem 2 that $[\Phi, \iota]$ is the chain: $\Phi \preceq G \prec \iota$.

For the purpose of investigating the subdirectly irreducible members of a **CDS**-algebra, we need the following technical result.

THEOREM 11. Let $(L;^*,^+,^\circ) \in \mathbf{CDS}$ be subdirectly irreducible. Then L has no 6-element chain.

PROOF: Suppose that there exist $a,b,c,d \in L$ with 0 < a < b < c < d < 1, then $a^* = b^* = c^* = d^* = 0$ and $a^+ = b^+ = c^+ = d^+ = 1$ by Corollary 2. It is obvious by Theorem 1(4) that $d^\circ = d$. On the one hand, if $c^\circ = c$, it follows from Theorem 6(1) and (2) that $b^\circ = d$ and $a^\circ = c$. Whence it follows the contradiction that $c^\circ \leq b^\circ$.

On the one hand, if $c^{\circ} = d$, we must have $b^{\circ} = b$. For otherwise, if $b^{\circ} = d$ then it follows a contradiction to Theorem 6(1); if $b^{\circ} = c$ then, $b^{\circ \circ} = c^{\circ} = d \neq b^{\circ}$, a contradiction. If now $a^{\circ} = a$, it follows a contradiction to Theorem 6(1) again. Since $a^{\circ} \leq b^{\circ}$, we must have $a^{\circ} = b$. Then it follows by Theorem 3 the contradiction that

$$\theta(a,b) \wedge \theta(c,d) = \theta_{lat}(a,b) \wedge \theta_{lat}(c,d) = \omega.$$

Using Theorem 5 and 6, together with Corollary 2, we now can completely characterize the subdirectly irreducible **CDS**-algebras.

THEOREM 12. Let $(L;^*,^+,^\circ) \in \mathbf{CDS}$. There are seven non-isomorphic subdirectly irreducible members in \mathbf{CDS} that are given by the following Hasse diagrams.

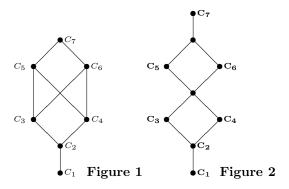
PROOF: We have seen that $L = [x]G \cup \{0,1\}$ for some $x \in L \setminus \{0,1\}$ with $|[x]G| \leq 4$. Since $|L| \leq 6$ and L has one and only one atom (coatom), using these observations and Theorem 5 and Theorem 6, we now can examine in turn each possibility for |[x]G| as follows.

- (1) If |[x]G| = 0 then, clearly L is of the form C_1 .
- (2) If |[x]G| = 1. Then L is of the form C_2 .
- (3) If |[x]G| = 2. In this case we have by Theorem 5, corollary 2 and Theorem 6 that L is of the form C_3 or C_4 .
- (4) If |[x]G| = 3. By Theorem 5, corollary 2 and Theorem 6 again that L is of the form C_5 or C_6 .
- (5) If |[x]G| = 4. Noting that L has no 6-element chain by theorem 11, by Theorem 5, corollary 2 and Theorem 6 again that L is of the form C_7 .

The lattice of subvarieties of the variety of **CDS**-algebras can be deduced from the ordered set (see Figure 1) using a classic theorem of Davey [7]. This states that **CDS** is a congruence-distributive variety generated by a finite set of finite algebras, and if the set $Si(\mathbf{CDS})$ of subdirectly irreducible algebras in **CDS** is ordered by

 $A \leqslant B \iff A$ is a homomorphic image of a subalgebra of B,

then the lattice $\Lambda(\mathbf{CDS})$ of variety of \mathbf{CDS} is isomorphic to the finite distributive lattice of down-sets of $Si(\mathbf{CDS})$. Apply this result to the variety of \mathbf{CDS} -algebras, we then can obtain the lattice $\Lambda(\mathbf{CDS})$ as described in Figure 2 below, in which $\mathbf{C_i}$ denotes the (join-irreducible) subvariety generated by the subdirectly irreducible algebra C_i .



ACKNOWLEDGMENTS I would like to express my appreciation deeply to the referee of this paper.

References

- [1] R. Balbes and Ph. Dwinger, **Distributive Lattices**, University of Missouri Press, Missouri, 1974.
- [2] T. S. Blyth and J. C. Varlet, Ockham Algebras, Oxford University Press, Oxford, 1994.
- [3] T. Katriňák, The structure of distributive double p-algebras. Regularity and congruences, Algebra Universalis 3 (1973), pp. 238–246.
- [4] T. Katriňák, Subdirectly irreducible distributive double p-algebras, Algebra Universalis 10 (1980), pp. 195–219.
- [5] T. S. Blyth and Jie Fang, Extended Ockham algebra, Communications in Algebra 28(3), (2000), pp. 1271–1284.
- [6] T. S. Blyth and Jie Fang, The lattice of congruences of a subdirectly irreducible extended Ockham algebra, Communications in Algebra 30(10), (2002), pp. 5023–5035.

[7] B. A. Davey, On the lattice of subvarieties, Houston J. Math. 5 (1979), pp. 183–192.

College of Mathematics and Software Science Sichuan Normal University Chengdu, 610066, P. R. China e-mail: leibowang@hotmail.com