Marek Tokarz

FUNCTIONS DEFINABLE IN SOME FRAGMENTS OF SUGIHARA ALGEBRAS

This abstract was read to the Conference Logical Calculi, Wrocław November 1974.

I. The notion of a Sugihara matrix was introduced by J. M. Dunn in [1] as a generalisation of a matrix constructed by Sugihara in [2]. In this paper we are dealing only with algebraic properties of Sugihara matrices, so we need not to consider any element as being designated or not. We define a Sugihara algebra (SA) to be aby algebra $\underline{A} = (A, \sim, \wedge, \vee, \rightarrow)$. Where A is a chain, \sim is a 1-1 order inverting "onto" mapping on A with $\sim \sim a=a$, all $a \in A$ (an involution), and $\wedge, \vee, \rightarrow$ being defined as follows, for all $a, b \in A : a \wedge b = min(a, b), a \vee b = max(a, b)$, and

$$a \to b = \left\{ \begin{array}{ll} \sim a \vee b & \text{if } a \leqslant b, \\ \sim a \wedge b & \text{otherwise.} \end{array} \right.$$

We consider here two fragments of SA's: Define an implicational Sugihara algebra (ISA) to be any algebra (A, \rightarrow) , where $(A, \sim, \wedge, \vee, \rightarrow)$ is an SA for some \sim, \wedge, \vee . Define an implicational-negational Sugihara algebra (INSA) to be any algebra (A, \sim, \rightarrow) , where $(A, \sim, \wedge, \vee, \rightarrow)$ is an SA for some \wedge, \vee .

In this paper criteria for definability of functions in ISA's an INSA's will be given.

By the language of ISA's (of INSA's) we shall understand the sentential language $\underline{L}^i = (L^i, \to)$ ($\underline{L}^{in} = (L^{in}, \sim, \to)$), where L^i (L^{in}) is the set of formulas built up by means of sentential variables p_1, p_2, \ldots and connective \to (connectives \sim, \to). Let $\alpha = \alpha(p_{i_1}, \ldots, p_{i_n})$ be a formula of \underline{L}^i (\underline{L}^{in}) containing but variables p_{i_1}, \ldots, p_{i_n} , let $\underline{A} = (A, \to)$ be an ISA (let $\underline{A} = (A, \sim, \to)$ be an INSA). If $a_1, \ldots, a_n \in A$ then the symbol

16 Marek Tokarz

 $\alpha(a_1,\ldots,a_n)$ stands for $h\alpha$ where h is any homomorphism of \underline{L}^i (of \underline{L}^{in}) into \underline{A} such that $hp_{i_1}=a_1,\ldots,hp_{i_n}=a_n$. Let f be a k-ary function on A, $f:A^k\to A$. Then f is said to be definable in the algebra \underline{A} if there is a formula $\alpha(p_{i_1},\ldots,p_{i_k})$ of \underline{L}^i (of \underline{L}^{in}) such that for every $a_1,\ldots,a_k\in A$, $f(a_1,\ldots,a_k)=\alpha(a_1,\ldots,a_k)$. We shall say in such a case that α defines f in A.

Let \underline{A} be as above. For $a \in A$ we define |a| to be a when $\sim a \leq a$ and $\sim a$ otherwise. If $\underline{a} = (a_1, \ldots, a_n)$ is a sequence of elements of A, then we put: $|\underline{a}| = (|a_1, \ldots, |a_n|)$, $\max |\underline{a}| = \max\{|a_1|, \ldots, |a_n|\}$. We will symbolically write $a \geq 0$ instead of $\sim a \leq a$ and a < 0 instead of $a < \sim a$.

II. In the whole Section II, $\underline{A} = (A, \rightarrow)$ stands for an arbitrary, but fixed, implicational Sugihara algebra and the variable f runs over all the k-ary functions on A, $f: A^k \rightarrow A$.

DEFINITION 1. Two sequences $\underline{a} = (a_1, \dots, a_k)$, $\underline{b} = (b_1, \dots, b_k)$ of elements of A are *similar*, in symbols $\underline{a} \approx \underline{b}$, provided that the following conditions are satisfied:

- (i) $|a_i| = max|\underline{a}|$ iff $|b_i| = max|\underline{b}|$, $i = 1, \dots, k$,
- (ii) if $|a_i| = max|\underline{a}|$ then $a_i < 0$ iff $b_i < 0$, i = 1, ..., k.

DEFINITION 2. The function f depends mainly on i-th component if for every sequence $\underline{a} = (a_1, \dots, a_k) \in A^k$ such that $a_i = \max |\underline{a}|, f(\underline{a}) = a_i$.

Clearly, there are functions with no main component as well as functions with several main components.

Theorem 1. A necessary and sufficient condition for f to be definable in A is that the following conditions hold for f:

- (1) for every $\underline{a} \in A^k$, $|f(\underline{a})| = max|\underline{a}|$,
- (2) there is some $i, 1 \leq i \leq k$, such that f depends mainly on i-th component,
- (3) if $\underline{a}, \underline{b} \in A^k$ and $\underline{a} \approx \underline{b}$ then $f(\underline{a}) = \underline{a}(j)$ iff $f(\underline{b}) = \underline{b}(j)$, all j, $1 \leq j \leq k$.
- III. In the Section III, $\underline{A} = (A, \sim, \rightarrow)$ stands for an arbitrary, but fixed, implicational-negational Sugihara algebra and the variable f runs over all the k-ary functions on A, $f: A^k \to A$.

Theorem 2. A necessary and sufficient condition for f to be definable in \underline{A} is that the following conditions hold for f:

- (1) for every $\underline{a} \in A^k$, $|f(\underline{a})| = max|\underline{a}|$,
- (2) if $\underline{a}, \underline{b} \in A^{\overline{k}}$ and $\underline{a} \approx \underline{b}$ then $f(\underline{a}) = \underline{a}(i)$ iff $f(\underline{b}) = \underline{b}(i)$, all $i, 1 \leq i \leq k$.

References

- [1] J. M. Dunn, Algebraic completeness results for R-mingle and its extensions, The Journal of Symbolic Logic 35 (1970), pp. 1–13.
- [2] T. Sugihara, Strict implication free from implicational paradoxes, Memoirs of the Faculty of Liberal Arts, Fukui University, Series 1, no. 4 (1955), pp. 55–59.

The Section of Logic Institute of Philosophy and Sociology Polish Academy of Sciences