Bulletin of the Section of Logic Volume 4/1 (1975), pp. 26–31 reedition 2012 [original edition, pp. 26–32]

Grzegorz Malinowski

MATRIX REPRESENTATION FOR THE DUAL COUNTERPARTS OF ŁUKASIEWICZ *n*-VALUED SENTENTIAL CALCULI AND THE PROBLEM OF THEIR DEGREES OF MAXIMALITY

This is a shortened version of the paper prepared for the International Symposium on Multiple-Valued Logic, Bloomington (USA), May 1975.

1. Dual counterparts of Łukasiewicz n-valued calculi

Let $L_n=(L,C_n)$ be the *n*-valued Lukasiewicz sentential calculus $(C_n$ is the consequence operation determined in L by the matrix $M_n=(\underline{A}_n,\{1\})$, where \underline{A}_n denote the algebra formed by the set $A_n=\{0,^1/_{n-1},^2/_{n-1},\ldots,1\}$ and the known Lukasiewicz operations $\rightarrow, \vee, \wedge, \sim$). By the dual counterpart of the calculus L_n $(n\geqslant 2)$ we shall understand the calculus $dL_n=(L,dC_n)$, where dC_n is the consequence operation dual with respect to C_n (see [4]).

Now, let us consider the following matrix:

$$\overline{M}_n = (\underline{A}_n, A_n - \{1\}). \tag{1}$$

Let us denote by \overline{C}_n the consequence operation determined (in L) by \overline{M}_n .

LEMMA 1. (cf. [2])
$$dC_n = \overline{C}_n$$
.

From the above lemma it follows that $d\mathbf{L}_n = (L, \overline{C}_n)$. In the sequel if we deal with $d\mathbf{L}_n$ we shall always use this matrix characterization of the calculus $d\mathbf{L}_n$.

In our later considerations we shall often use the connectives $=_n$ (of L) defined in [2]. We note that

$$\exists_n x = \begin{cases} 0 & \text{if } x = 1\\ 1 & \text{otherwise} \end{cases}$$
 (2)

for $x \in A_n$. As a rule we shall always write \neg instead of \neg _n while the given n-valued calculus is considered. The following correspondence between the sets of the theorems of \mathbb{L}_n and $d\mathbb{L}_n$ will be used in the paper

$$\exists \alpha \in dC_n(\emptyset) \text{ if and only if } \alpha \in C_n(\emptyset).$$
 (3)

2. $d\mathbf{L}_n$ -algebras

Given a consequence C defined on L, denote by Matr(C), the class of all matrices M such that $C \leq Cn_M$. Let now $M = (A_M, I) \in Matr(dC_n)$. Put

$$a \approx_M b$$
 if and only if $= (a \to b), = (b \to a) \in I$. (4)

Now, we shall define some special subset of elements of the matrix M.

 $\bigvee_{M} = \{ a \in A_{M} : \text{ there exists a formula } \alpha \in L, \text{ such that } \neg \alpha \in dC_{n}(\emptyset),$ and such that there exists valuation h in M for which $h\alpha = a \}.$ (5)

Lemma 2.

- (i) The relation \approx_M is a congruence of A
- (ii) M/\approx_M is a one element set
- (iii) Put $1_M = \bigvee^M / \approx_M$ (see (ii)). Then, we have: if $a \to b = 1_M$ and $b \to a = 1_M$ then a = b.

In the sequel we shall consider the class

$$Matr^{R}(dC_{n}) = {^{M}/ \approx_{M} : M \in Matr(dC_{n})}.$$
 (6)

This class has similar properties to those of the class $Alg^R(C_n)$ of all S-algebras for L_n in the sense of Rasiowa (cf. [3]). In particular, as it will be shown further, so called Lindenbaum matrix for dC_n is free in this class.

3. The equational characterization of $Matr^{R}(dC_{n})$

Let $\underline{K}(\underline{A}_n)$ (given $n, n \ge 2$) denote the smallest equational class containing the algebra \underline{A}_n . Using the Birkhoff's characterization of equational classes we have

$$\underline{K}(\underline{A}_n) = H(S(P(\underline{A}_n))), \tag{7}$$

where P denotes the operation of taking direct products, S- of subalgebras and H- of homomorphic images. Let us also denote by $\underline{K}(M_n)$ the same class of algebras but treated as matrices with one distinguished element $1 = a \to a$ (a is any element of the algebra under consideration). Note, that this element is a natural counterpart of $1 \in A_n$.

LEMMA 3. (cf. [6])
$$\underline{K}(M_n) = Alg^R(C_n)$$
.

Now, let us denote by $\underline{K}(\overline{M}_n)$ a class of matrices corresponding to $\underline{K}(\underline{A}_n)$ defined in the following manner

- $i_1 \text{ If } A_M = A_n, \text{ then } I_M = A_n \{1\}$
- i₂ If A_M is a product of the indexed set of algebras $\{A_{M_i}\}_{i\in I}$, then $I_M=\prod\{I_{M_i}:i\in I\}$
- i₃ If A_M is a subalgebra of some algebra A_{M_0} , then $I_M = A_M \cap I_{M_0}$
- i_4 If $A_M = h(A_{M_0})$, where h is a homomorphism, then $I_M = h(I_{M_0})$.

From the representation theorem quoted in [6] as Lemma 5 we obtain

LEMMA 5. For every matrix $M = (A_M, I_M) \in \underline{K}(\overline{M}_n)$ there exists a matrix $M' = (A_{M'}, I_M)$ with $A_{M'}$, being a subalgebra of \underline{A}_n^T (T is a set of indices), such that $A_M \simeq A_{M'}$ and $Cn_M = Cn_{M'}$.

LEMMA 6. $M = (A_M, I_M) \in \underline{K}(\overline{M}_n)$ if and only if 1^0 . $A_M \in \underline{K}(\underline{A}_n)$ and 2^0 . $I_M = \{a \in A_M : \exists a = 1_M\}$.

Using thee results of [5] and the Lemmas 5 and 6 above one can easy prove that there holds

LEMMA 7.
$$K(\overline{M}_n) \subseteq Matr^R(dC_n)$$
.

Now, we are going to construct Lindenbaum matrix for dL_n . In the language L we introduce the following relation:

$$\alpha \approx \beta$$
 if and only if $\exists (\alpha \to \beta), \exists (\beta \to \alpha) \in dC_n(\emptyset)$. (8)

One can easily verify that \approx is a congruence relation on L. The quotient matrix

$$\Lambda_n = (^L/\approx, dC_n(\emptyset)/\approx) \tag{9}$$

will be called the Lindenbaum matrix for $d\mathbf{L}_n$.

LEMMA 8. $\Lambda_n \in \underline{K}(\overline{M}_n)$.

H. Rasiowa in [3] proved that the Lindenbaum matrix for any consistent implicative calculus S is free in the class $Alg^R(S)$. This result is also valid for Łukasiewicz calculi.

The following lemma holds:

LEMMA 9. Λ_n is free in the class $Matr^R(dC_n)$. The free generators of Λ_n are the classes determined by the sentential variables.

The algebra which belongs to the equational class X and is free (in X) generators the whole class X. Thus the Lemmas 8, 9 give us the following

LEMMA 10.
$$Matr^R(dC_n) \subseteq \underline{K}(\overline{M}_n)$$
.

Combining the results of Lemma 6 and Lemma 7 we obtain the theorem being the main issue of the present section.

THEOREM 1. $Matr^{R}(dC_{n}) = \underline{K}(\overline{M}_{n}).$

4. Degrees of maximality of $d\mathbf{L}_n$

Let $M \in Matr^R(dC_n)$ be an arbitrary matrix and let \approx_M be the congruence relation defined by (4). From the fact \approx_M is a congruence of M (see Lemma 2(i)) it follows that

$$Cn_M = Cn_{M/\approx_M}. (10)$$

As it was defined in the Section 2, the whole class of such M/\approx_M is $Matr^R(dC_n)$. Moreover, according to the equational characterization given

in Section 3 we have $Matr^R(dC_n) = \underline{K}(\overline{M}_n)$. This implies that the consequence operation determined by an arbitrary $M \in Matr(dC_n)$ is equal to some consequence determined by the matrix belonging to the class $\underline{K}(\overline{M}_n)$.

LEMMA 11. Let $M = (A_M, I_M) \in \underline{K}(\overline{M}_n)$ and let $M_+ = (A_M, 1_M)$ be the corresponding matrix from $\underline{K}(M_n)$ (i.e. $1_M = \{ \exists a : a \in I_M \}$ – see Lemma 6). Then for every $\alpha \in L$

$$\alpha \in Cn_M(X)$$
 if and only if $\exists \alpha \in Cn_{M_+} \ (\exists X),$ (11)

$$\exists \alpha \in Cn_M(\exists X) \text{ if and only if } \alpha \in Cn_{M_+}(X),$$
 (12)

where $X \subseteq L$ and $\neg X$ denotes the set resulting from X by preceding each of its formulas by \neg .

LEMMA 12. (cf. [6]) For each matrix $A \in \underline{K}(M_n)$ there are pairwise different submatrices M_{m_1}, \ldots, M_{m_k} such that $Cn_A = Cn_{M_{m_1}} \times \ldots \times M_{m_k}$.

From Lemma 1 and Lemma 12 by the argument used in §4 of [6] we obtain

Theorem 2. The degree of maximality of any n-valued logic dL_n is finite.

REMARK. The degrees of maximality of calculi L_n and dL_n are equal. In particular for the calculi L_n , dL_n for which (n-1) is prime, the degree of maximality equals 4 (cf. [1]).

References

- [1] G. Malinowski, Degrees of maximality of some Łukasiewicz logics, this **Bulletin**, vol. 3 (1974), no. 3/4, pp. 27–33.
- [2] G. Malinowski and M. Spasowski, *Dual counterparts of Łukasiewicz's sentential calculi*, **Studia Logica** 33 (1974), no. 2, pp. 153–162.
- [3] H. Rasiowa, **An algebraic approach to non classical logics**, North Holland Publ. Co, Amsterdam, PWN, Warszawa, 1974.
- [4] R. Wójcicki, Dual counterparts of consequence operations, this **Bulletin**, vol. 2 (1973), no. 1, pp. 54–57.

- [5] R. Wójcicki, Matrix approach in methodology of sentential calculi, **Studia Logica** 33 (1973), pp. 7–37.
- [6] R. Wójcicki, A theorem of the finiteness of the degree of maximality of the n-valued Lukasiewicz logic, this **Bulletin**, vol. 4 (1975), no. 1, pp. 19–25.

Institute of Philosophy Łódź, University