Tomasz Furmanowski

REMARKS ON DISCUSSIVE PROPOSITIONAL CALCULUS

This is an abstract of the paper which will be published in Studia Logica.

Jaśkowski has given a definition for system D_2 by interpretation in homogeneous predicate calculus of one variable see ([1], [2]). It is well known that homogeneous predicate calculus of one variable is equivalent to the modal system S_2 of Lewis. Kotas in paper [3] and da Costa in paper [4] have shown that D_2 is finitely axiomatizable. In paper 4 the problem of construction discussive system based on a different modal system, for example S_4 , is given.

We shall show that for every modal system M such that $S4 \subseteq M \subseteq S5$ the discussive system D(M) based on M is equal to D_2 . It does seem not trivial because $S4 \neq S5$.

We shall use signs \to , \Rightarrow , \lor , \land , \sim , M, L for the material implication, the strict implication, for disjunction, conjunction, negation, possibility and necessity, respectively. Logical system we regard as the set of formulas. L and s(L) are the set of thesis and the set of well formed formulas for a given system L, respectively. P, Q, R, \ldots and so on are the signs for formulas and p, q, r, \ldots and so are the signs for sentential variables.

Now we define system M - S4 (see [3]).

Definition 1.

- a) s(M S4) = s(S4).
- b) $P \in M S4$ iff $MP \in S4$.

Lemma 1. The following axiom schemes, rules of inferences and definitions constitute a complete axiomatization of M-S4:

I. Axiom schemes:

$$\begin{split} &1. \ L(P \rightarrow (\sim P \rightarrow Q)) \\ &2. \ L((P \rightarrow Q) \rightarrow [(Q \rightarrow R) \rightarrow (P \rightarrow R)]) \\ &3. \ L[(\sim P \rightarrow P) \rightarrow P] \\ &4. \ L(LP \rightarrow P) \\ &5. \ L(L(P \rightarrow Q) \rightarrow (LP \rightarrow LQ)) \\ &6. \ L(LP \rightarrow LLP) \end{split}$$

II. Derivation rules:

$$(r_1) \frac{LP, L(P \to Q)}{LQ} \quad (r_3) \frac{LP}{P}$$

$$(r_2) \frac{LP}{LLP}$$
 $(r_4) \frac{MP}{P}$

III. Definitions:

$$\begin{aligned} &1. \ P \wedge Q = \sim (\sim P \vee \sim Q) \\ &2. \ P \leftrightarrow Q = (P \rightarrow Q) \wedge (Q \rightarrow P) \\ &3. \ P \Rightarrow Q = L(P \rightarrow Q) \\ &4. \ MP = \sim L \sim P. \\ &5. \ P \Leftrightarrow Q = L(P \leftrightarrow Q). \end{aligned}$$

LEMMA 2. Formula $L(MP \to LMP)$ is a thesis of system M - S4.

System M-S5 arises from S5 in the same way as M-S4 from S4. It is easy to see (cf. [3]) that the sets of axioms and rules for M-S5 are the same as for M-S4 except of axiom number 6. In the system M-S5 as the sixth axiom is the formula $L(MP \to LMP)$. Thus from Lemmas 1, 2 we have $M-S5 \subset M-S4$. The converse inclusion is trivial.

Theorem 1. $P \in M - S4$ iff $P \in M - S5$.

COROLLARY 1. For every modal system M such that $S4 \subseteq M \subseteq S5$ we have: $MP \in M$ iff $MP \in S5$.

Following Jaśkowski we shall give a definition for the discussive system $\mathcal{D}(M)$ based on a modal system M.

Definition 2. Connectives determined as follows:

- a. $P \rightarrow_d Q = MP \rightarrow Q$,
- b. $P \wedge_d Q = P \wedge MQ$,

we shall name a discussive implication and discussive conjunction, respectively.

DEFINITION 3. By discussive system D(M) based on modal system M we mean:

- a. 1° If p,q,r,\ldots are the sentential variables then $p,q,r,\ldots \in s(D(M))$. 2° If $P,Q \in s(D(M))$ then $P \vee Q, P \wedge Q, P \rightarrow_d Q, P \wedge_d Q, \sim P \in s(D(M))$.
 - $3^{\circ} s(D(M))$ is the smallest set satisfying the conditions 1° and 2° .
- b. $P \in D(M)$ iff $MP' \in M$ where P' is the formula obtained from P by elimination the symbols \rightarrow_d and \land_d according to their definitions.

In this notation $D(S5) = D_2$. The following theorem results from the Corollary 1 and Definition 3:

THEOREM 2. For every modal system M such that $S4 \subseteq M \subseteq S5$, $D(M) = D_2$.

In this way there arises the problem: For what different modal system M, $D(M) = D_2$?

References

- [1] S. Jaśkowski, Rachunek zdań dla systemów dedukcyjnych sprzecznych, Studia Soc. Sci. Torunensis, vol. I, nr 5 (1948), pp. 57–77.
- [2] S. Jaśkowski, O konjunkcji dyskusyjnej w rachunku zdań dla systemów dedukcyjnych sprzecznych, Studia Soc. Sci. Torunensis, vol. I, nr 8 (1959), pp. 171–172.
- [3] J. Kotas, *The axiomatization of S. Jaśkowski discussive logic*, forthcoming in **Studia Logica**.
- [4] N. C. A. da Costa, Remarks on Jaśkowski discussive logic, Forthcoming in Reports on Mathematical Logic 4 (1975).
 - [5] Feys, Modal Logic, 1965.

36 Tomasz Furmanowski

 $[6]\,$ H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics, Warszawa, 1968.

[7] J. Kotas, A. Pieczkowski, Allgemeine Logische und Mathematische Theorien, Zeitschrift Mathematische Logik und Grundlagen der Mathematik, Bd. 16 (1970), pp. 353–376.

Institute of Mathematics Nicholas Copernicus University Toruń