Bulletin of the Section of Logic Volume 4/3 (1975), pp. 109–113 reedition 2012 [original edition, pp. 109–114]

Cecylia Rauszer, Bogdan Sabalski

NOTES ON THE RASIOWA - SIKORSKI LEMMA

This paper aims at formulating a condition necessary and sufficient for the existing of a prime filter preserving enumerable infinite joins and meet in a distributive lattice.

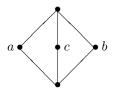
First we prove a simple but very useful

LEMMA 1. Every lattice $\underline{A} = (A, \cup, \cap)$ is distributive if and only if $a \leq b$ provided that there exists $c \in A$ such that $c \neq a$, $c \neq b$ and $a \leq b \cup c$ and $a \cap c \leq b$.

Suppose that \underline{A} is a distributive lattice and $a \leq b \cup c$, $a \cap c \leq b$ for some $c \in A, c \neq a, c \neq b$. Then

$$a = a \cap a \leqslant a \cap (b \cup c) = (a \cap b) \cup (a \cap c) \leqslant (a \cap b) \cup b = b$$

Other direction, suppose that a lattice A is not distributive and let \underline{A} be the form



It is obvious that $a \leq b \cup c$ and $a \cap c \leq b$ but $a \leq b$ does not hold.

COROLLARY. For every lattice $\underline{A} = (A, \cup, \cap)$ the next two conditions are equivalent:

- (i) $a \leqslant b$ if and only if there exists $c \in A$ such that $c \neq a$, $c \neq b$, $a \leqslant b \cup c$ and $a \cap c \leqslant b$,
- (ii) A is a distributive lattice.

It is well known that

LEMMA 2. In every lattice A, if the infinite join and meets concerned exist; then

$$\bigcup_{t \in T} (a_t \cap b) \leqslant b \cap \bigcup_{t \in T} a_t,$$

$$\bigcap_{t \in T} b_t \cup a \leqslant \bigcap_{t \in T} (b_t \cup a).$$

Let $\underline{A} = (A, \cup, \cap)$ be a lattice and let for every $n \in \omega$, $A_{2n} \subset A$ and $B_{2n+1} \subset A$. We denote

$$a_{2n} = \bigcup_{a \in A_{2n}} a$$
 $b_{2n+1} = \bigcap_{b \in B_{2n+1}} b$

A prime filter ∇ is said to be a Q-filter provided that

- (f_1) for every $n \in \omega$ if $a_{2n} \in \nabla$ then $A_{2n} \cap \nabla \neq \emptyset$,
- (f_2) for every $n \in \omega$ if $B_{2n+1} \subset \nabla$ then $b_{2n+1} \in \nabla$.

THEOREM. Let $\underline{A} = (A, \cup, \cap)$ be a distributive lattice and let for every $n \in \omega$, a_{2n} and b_{2n+1} exist. Suppose, that for some x, y the inequality $x \leq y$ does not hold.

Then there exists a Q-filter ∇ such that $x \in \nabla$ and $y \notin \nabla$ if and only if for every $n \in \omega, \ a', b' \in A$

$$\begin{array}{l} (\cap, \cup) \ \bigcap_{b \in B_{2n+1}} (a' \cup b) \leqslant a' \cup \bigcap_{b \in B_{2n+1}} b, \\ (\bigcup, \cap) \ b' \cap \bigcup_{a \in A_{2n}} a \leqslant \bigcup_{a \in A_{2n}} (b' \cap a). \end{array}$$

PROOF. Suppose that there exist $n_0 \in \omega$ such that

$$\bigcap_{b \in B_{2n_0+1}} (a' \cup b) \leqslant a' \cup \bigcap_{b \in B_{2n_0+1}} b$$

does not hold. Then by our assumption there exists a Q-filter ∇ such that $\bigcap_{b \in B_{2n_0+1}} (a' \cup b) \in \nabla$ and $(a' \cup \bigcap_{b \in B_{2n_0+1}} b) \notin \nabla$, for some fixed $n_0 \in \omega$. Hence ∇ is a Q-filter we infer that for every $b \in B_{2n_0+1}, b \in \nabla$ or $a' \in \nabla$ and $a' \notin \nabla$ and there exists $b'_0 \in B_{2n_0+1}$ such that $b'_0 \notin \nabla$. But this is a contradiction.

In a similar way we proof the condition (\bigcup, \cap) . If for some $n_0 \in \omega$

$$b'\cap\bigcup_{-a\in A^a_{2n_0}}\leqslant\bigcup_{a\in A_{2n_0}}(b'\cap a)$$

does not hold, then there exists a Q-filter ∇ such that

$$b'\cap\bigcup_{a\in A_{2n_0}}a\in\nabla\text{ and }\bigcup_{a\in A_{2n_0}}(b'\cap a)\not\in\nabla.$$

Thus

$$b' \in \nabla \& \exists_{a \in A_{2n_0}} a \in \nabla \& \forall_{a \in A_{2n_0}} \sim (b' \in \nabla \& a \in \nabla)$$

but it is a contradiction which proves necessity.

Other direction. Suppose that for some $x, y, x \leq y$ does not hold and the conditions (\bigcap, \cup) and (\bigcup, \cap) are satisfied.

Now we will construct two sequences $(\alpha_n)_{n\in\omega}$ and $(\beta_n)_{n\in\omega}$ of the elements of A such that:

- (i) $\alpha_0 = y$ $\beta_0 = x$
- (ii) $\alpha_{n-1} \leqslant \alpha_n$ and $\beta_{n-1} \geqslant \beta_n$ for n > 0,
- (iii) $\forall_{n \in \omega} (\beta_{2n+1} \leqslant b_{2n+1} \vee \exists_{b \in B_{2n+1}} b \leqslant \alpha_{n+1}),$ $\forall_{n \in \omega} (\exists_{a \in A_{2n}} \beta_{2n} \leqslant a \vee a_{2n} \leqslant \alpha_{2n}).$
- (iv) for every $n \in \omega$ the relation $\beta_n \leq \alpha_n$ does not hold.

Suppose that for $k \in \omega$, $\alpha_1, \ldots, \alpha_{2k}$ and $\beta_1, \ldots, \beta_{2k}$ are constructed such that (ii) – (iv) are fulfilled. On account of (iv) we have that the relation $\beta_{2k} \leqslant \alpha_{2k}$ does not hold. By Lemma 1 we have that for every $c \in A$, the relations

$$\beta_{2k} \leqslant \alpha_{2k} \cup c \text{ or } \beta_{2k} \cap c \leqslant \alpha_{2k}$$

do not hold.

Putting $c = b_{2k+1}$ we obtain that $\beta_{2k} \leq \alpha_{2k} \cup b_{2k+1}$ does not hold or $\beta_{2k} \cap b_{2k+1} \leq \alpha_{2k}$ does not hold.

Consider the first inequality. We have that

$$\sim (\beta_{2k} \leqslant \alpha_{2k} \cup \bigcap_{b \in B_{2k+1}} b).$$

By the condition (\bigcap, \cup) we infer that

$$\sim (\beta_{2k} \leqslant \bigcap_{b \in B_{2k+1}} (\alpha_{2k} \cup b)),$$

i.e.

$$\exists b \in B_{2k+1} \sim (\beta_{2k} \leqslant \alpha_{2k} \cup b).$$

Thus we have

$$(*) \exists b \in B_{2k+1} \sim (\beta_{2k} \leqslant \alpha_{2k} \cup b) \text{ or } \sim (\beta_{2k} \cap b_{2k+1} \leqslant \alpha_{2k}).$$

Now if the first condition (*) is satisfied we put

$$\alpha_{2k+1} = \alpha_{2k} \cup b \text{ and } \beta_{2k+1} = \beta_{2k}.$$

If the second condition (*) takes place we put

$$\beta_{2k+1} = \beta_{2k} \cap b_{2k+1}$$
 and $\alpha_{2k+1} = \alpha_{2k}$.

It is not difficult to check that so defined α_{2k+1} and β_{2k+1} satisfy (ii) – (iv).

Having α_{2k+1} and β_{2k+1} we define the α_{2k+2} and β_{2k+2} in a similar way. By (iv) we have $\beta_{2k+1} \leq \alpha_{2k+1}$ does not hold, i.e. that for every $c \in A$, the relations

$$\beta_{2k+1} \leqslant \alpha_{2k+1} \cup c \text{ or } \beta_{2k+1} \cap c \leqslant \alpha_{2k+1}$$

do not hold.

Putting $c = a_{2k+2}$ we have that

$$\sim (\beta_{2k+1} \leqslant \alpha_{2k+1} \cup a_{2k+2}) \text{ or } \exists_{a \in A_{2k+2}} \sim (\beta_{2k+1} \cap a \leqslant \alpha_{2k+1})$$

We define

$$\beta_{2k+2} = \beta_{2k+1}$$
 and $\alpha_{2k+2} = \alpha_{2k+1} \cup a_{2k+2}$

or

$$\beta_{2k+2} = \beta_{2k+1} \cap a \text{ and } \alpha_{2k+2} = \alpha_{2k+1}$$

In both cases α_{2k+2} and β_{2k+2} satisfied (ii) – (iv).

In this way we defined the sequences $(\alpha_n)_{n\in\omega}$ and $(\beta_n)_{n\in\omega}$. Let I be the ideal generated by the sequence $(\alpha_n)_{n\in\omega}$ and F be the filter generated by the sequence $(\beta_n)_{n\in\omega}$. By (iv) I and F are disjoint and

- $(\mathbf{v}) \ \forall_{n \in \omega} (b_{2n+1} \in F \vee \exists_{b \in B_{2n+1}} b \in I),$
- (vi) $\forall_{n \in \omega} (a_{2n} \in I \vee \exists_{a \in A_{2n}} a \in F).$

It is well known that in a distributive lattice, every filter can be separated from an ideal, disjoint from it, by a prime filter. Let ∇ be a prime filter

containing F such that ∇ is disjoint from I. It is obvious that $x \in \nabla$ and $y \notin \nabla$. By (v) and (vi) ∇ is the required Q-filter, which completes the proof of the theorem.

In the same way we can prove a condition necessary and sufficient for the existing of a prime ideal preserving enumerable infinite joins and meets in a distributive lattice.

 $\begin{array}{c} Institute \ of \ Mathematics \\ Warsaw \ University \end{array}$