Maciej Spasowski

THE DEGREES OF COMPLETENESS OF DUAL COUNTERPARTS OF ŁUKASIEWICZ SENTENTIAL CALCULI

- 1. In this paper we use the terminology of [1]. Moreover, let $Sb(X) = \{e\alpha | \alpha \in X\}$ and e is any substitution in \mathcal{L} , $\overline{dC_k}(X) = dC_k(Sb(X))$ and $d\mathcal{L}_k = taut(\overline{\mathcal{M}}_k)$.
- 2. The notions of the ordinal and cardinal degree of completeness of a consequence operation has been introduced by A. Tarski in [2] and [3] respectively. We shall give modified definitions of these notions.

DEFINITION 1. The ordinal degree of completeness of C, in symbol $\overline{g}(C)$, is the smallest ordinal number $\mu \neq 0$ which satisfies the following condition: there exists no increasing sequence of type μ of consistent invariant C-systems which begins with $C(\emptyset)$.

DEFINITION 2. The cardinal degree of completeness of C, in symbols g(C), is the number of invariant C-systems.

In [1] there is proved that

(*) $d\mathbf{L}_k \subseteq d\mathbf{L}_l$ iff l-1 divides k-1, in symbols l-1|k-1.

This fact enables us to count degrees of completeness a consequence operation dC_k by means of the method used by M. Tokarz (cf. [4] and [5]).

LEMMA 1. $dC_k(X) \subseteq dL_l$ if and only if $X \subseteq dL_l$ and $dL_k \subseteq dL_l$.

PROOF: Implication from left to right is obvious. Suppose that $\alpha \notin d\mathbf{L}_l$, i.e., there exists a valuation $h_1: \mathcal{L} \to \overline{\mathcal{M}}_l$ such that $h_1(\alpha) = 1$. On the other hand observe that $Sb(X) \subseteq d\mathbf{L}_l$. Hence for every $h: \mathcal{L} \to \overline{\mathcal{M}}_l$,

 $h(Sb(X)) \subseteq A_l - \{1\}$. Consequently, $h_1(Sb(X)) \subseteq A_l - \{1\}$. Since $d\mathbf{L}_k \subseteq d\mathbf{L}_l$ then l-1|k-1. Therefore h_1 is a valuation in $\overline{\mathcal{M}}_k$. Hence $\alpha \notin \overline{dC}_k(X)$. This complete the proof of Lemma 1.

Theorem 1. If $dL_k = \bigcap \{dL_i | i \in I\}$ then $k \in I$.

PROOF: Notice that I is finite. Assume that $k \notin I$. Let $a = lcm(i-1|i \in I \cup \{k\})$, where lcm being the least common multipla. Let $\alpha = \alpha(p)$ and

$$\alpha(\frac{X}{a}) \begin{cases} < 1 & \text{if there exists } j \in I \text{ such that } a_j | x \\ & \text{where } a_j = \frac{a}{j-1} \\ = 1 & \text{otherwise.} \end{cases}$$

Observe that $\alpha \in \bigcap \{d\mathbb{L}_i i \in I\}$ but $\alpha \notin d\mathbb{L}_k$. Therefore $k \in I$.

Theorem 2. $\overline{dC}_n(X) = \bigcap \{dL_i | \overline{dC}_n(X) \subseteq dL_i\}.$

PROOF: Inclusion \subseteq is obvious. In view of Lemma 1 it is sufficient to prove that $\bigcap \{d\mathbf{L}_i | X \subseteq d\mathbf{L}_i \text{ and } d\mathbf{L}_n \subseteq d\mathbf{L}_i\} \subseteq \overline{dC}_n(X)$.

I. Let $X = \{\alpha\}$, where $\alpha = \alpha(p_1, \dots, p_n)$. Moreover let $d\mathbb{L}_{k_1}, \dots, d\mathbb{L}_{k_l}$ and $d\mathbb{L}_{j_1}, \dots, d\mathbb{L}_{j_m}$ be sequences of all d-tautologies satisfying the following conditions:

- (1) $\alpha \in d\mathbf{L}_{k_1} \cap \ldots \cap d\mathbf{L}_{k_l}$ and $d\mathbf{L}_n \subseteq d\mathbf{L}_{k_1} \cap \ldots \cap d\mathbf{L}_{k_l}$,
- (2) $\alpha \notin d\mathbf{L}_{j_i}$, for $i = 1, \ldots, m$ and $d\mathbf{L}_n \subseteq d\mathbf{L}_{j_1} \cap \ldots \cap d\mathbf{L}_{j_m}$.

In virtute of (*) we have that these sequences are finite.

Observe that if there exists no sequences are finite condition (2) then $\alpha \in d\mathbf{L}_n$, so the theorem is evident.

In view of condition (2) the formula α is demolished in any matrix $\overline{\mathcal{M}}_{j_i}$ for $i=1,\ldots,m$. Hence there exists sequences $\frac{x_1^i}{n-1},\ldots,\frac{x_s^i}{n-1}\in A_{j_i}$, for $i=1,\ldots,m$, such that $\overline{\alpha}(\frac{x_1^i}{n-1},\ldots,\frac{x_s^i}{n-1})=1$. Suppose that $\beta\in\bigcap\{d\mathbf{L}_i\ i=1,\ldots,l\}$. We shall show that $\beta\in\overline{dC}_n(\{\alpha\})$. Due to the fact that $dC_n=C_{\overline{n}}^*$ (see [1]) it suffice to prove that for every valuation $h:\mathcal{L}\to\overline{\mathcal{M}}_n$, if $h(Sb(\{\alpha\}))\subseteq A_n-\{1\}$ then $h(\beta)<1$.

Let $h_1: \mathcal{L} \to \overline{\mathcal{M}}_n$ and let $h_1(Sb(\{\alpha\})) \subseteq A_n - \{1\}$. Notice that $h_1(V)$, where V is the set of all propositional variables, is a finite set. Let us put $h_1(V) = \{\frac{y_{r_1}}{n-1}, \dots, \frac{y_{r_k}}{n-1}\}$. Consider two cases:

a)
$$gcd(y_{r_1}, \dots, y_{r_k}, n-1) = 1$$
,

b)
$$gcd(y_{r_1}, \ldots, y_{r_k}, n-1) \neq 1$$
,

gcd being the greatest common divisor.

Ad a). Let $\varphi_1,\ldots,\varphi_s$ be arbitrary formulas satisfying the following equalities: $h_1(\varphi_1)=\frac{x_1^1}{n-1},\ldots,h_1(\varphi_s)=\frac{x_s^1}{n-1}$. It follows from the McNaughton's criterion that such formulas do exist. Therefore $h_1(\alpha(\varphi_1,\ldots,\varphi_s))=1$ Hence $h_1(Sb(\{\alpha\}))\not\subseteq A_n-\{1\}$ contrary to our assumption.

Ad b). Let $gcd(y_{r_1}, \ldots, y_{r_s}, n-1) = d > 1$. Put $c = \frac{n-1}{d}$. Notice that $\frac{y_{r_1}}{n-1}, \ldots, \frac{y_{r_k}}{n-1} \in A_{c+1}$. There are two possibilities:

$$b_1$$
) $c+1 \in \{j_1, \ldots, j_m\},\$

or else

$$b_2$$
) $c+1 \notin \{j_1,\ldots,j_m\}.$

Ad b₁). Let for example $c+1=j_p$ for a certain $p\in\{1,\ldots,m\}$. On the grounds of an argument similar to that in a) we have that there exist formulas Ψ_1,\ldots,Ψ_s such that $h_1(\Psi_1)=\frac{x_1^p}{n-1},\ldots,h_1(\Psi_s)=\frac{x_s^p}{n-1}$. Hence $h_1(\alpha(\Psi_1,\ldots,\Psi_s))=1$ and then $h_1(Sb(\{\alpha\}))\not\subseteq A_n-\{1\}$ contrary to our assumption.

Ad b₂). Since c divides n-1 then $d\mathbb{L}_n \subseteq d\mathbb{L}_{c+1}$. Hence $c+1 \in \{k_1,\ldots,k_l\}$. Let $c+1=k_p$ for a certain $p\in\{1,\ldots,l\}$. Therefore $h_1(V)\subseteq A_{k_p}$. Since $\beta\in\bigcap\{d\mathbb{L}_i|i\in\{1,\ldots,l\}\}$ then $\beta\in d\mathbb{L}_{k_p}$. This means that $h_1(\beta)<1$, and the proof is complete for $x=\{\alpha\}$.

II. Assume now that X is a set of formulas. Let $d\mathbf{L}_{k_1}, \ldots, d\mathbf{L}_{k_l}$ and $d\mathbf{L}_{j_1}, \ldots, d\mathbf{L}_{j_m}$ be sequences of all the systems of d-tautologies satisfying the following conditions:

(1')
$$X \subseteq d\mathbf{L}_{k_1} \cap \ldots \cap d\mathbf{L}_{k_l}$$
 and $d\mathbf{L}_n \subseteq d\mathbf{L}_{k_1} \cap \ldots \cap d\mathbf{L}_{k_l}$,

$$(2')$$
 $X \not\subseteq d\mathbb{L}_{j_i}$ for $i = 1, \dots, m$ and $d\mathbb{L}_n \subseteq d\mathbb{L}_{j_1} \cap \dots \cap d\mathbb{L}_{j_m}$,

In virtue of (2') there exist formulas $\alpha_{j_1},\ldots,\alpha_{j_m}$ such that $\alpha_{j_i}\in X$ and $\alpha_{j_i}\not\in d\mathbf{L}_{j_i},\alpha_{j_i}\not\in d\mathbf{L}_{i_i}$ for $i=1,\ldots,m$. Let $\alpha=\alpha_{j_1}\vee\ldots\vee\alpha_{j_m}$. Notice that $\alpha\in d\mathbf{L}_{k_1}\cap\ldots\cap d\mathbf{L}_{k_l}$ and $\alpha\not\in d\mathbf{L}_{j_1}$ for $i=1,\ldots,m$. From (I) we have already known that $\overline{dC}_n(\{\alpha\})=\bigcap\{d\mathbf{L}_{k_i}|i=1,\ldots,l\}$. Since $\underline{dC}_n(\{\alpha\})\subseteq\underline{dC}_n(X)$ (see Lemma 5.1(iii) and Theorem 4.1b) in [1]) then $\overline{dC}_n(\{\alpha\})\subseteq\underline{dC}_n(X)$. Hence $\bigcap\{d\mathbf{L}_{k_i}|i=1,\ldots,l\}\subseteq\overline{dC}_n(X)$. This completes the proof.

THEOREM 3. $\overline{g}(dC_n) = p(n-1)+1$, where p(m) is the number of divisors of m (including m and 1).

PROOF: Let $d_1, \ldots, d_{p(n-1)}$ be the decreasing sequence of all natural numbers d_j such that d_{j-1} divides n-1. Let $I_j = \{d_j, d_{j+1}, \ldots, d_{p(n-1)}\}$. In virtute of Theorem 1 we have that $d\mathbb{L}_n = \bigcap \{d\mathbb{L}_i | i \in I_1\} \not\subseteq \bigcap \{d\mathbb{L}_i | i \in I_2\} \not\subseteq \ldots \not\subseteq \bigcap \{d\mathbb{L}_i | i \in I_{p(n-1)}\} \not\subseteq L$. Hence $\overline{g}(dC_n) \geqslant p(n-1) + 1$.

In virtute of Theorem 2 we have that $\overline{g}(dC_n) \leq p(n-1) + 1$. This complete the proof.

Conclusion: $\overline{g}(C_n) = \overline{g}(dC_n)$.

LEMMA 2. If $k \ge m$ then $\exists_k (((p \to_n g) \to p) \to p) \in dL_m$ iff $n \ge m-1$.

PROOF: Suppose that n < m-1. Let h_1 be a valuation such that $h_1(p) = \frac{m-2}{m-1}$ and $h_1(q) = 0$. It is easy to see that $h_1(=_{\mid k}(((p \to_n g) \to p) \to p)) = 1$. Let now $n \geqslant n-1$. Then for any valuation h in the matrix $\overline{\mathcal{M}}_m$, $h(((p \to_n g) \to p) \to p) = 1$. Hence $h(=_{\mid k}(((p \to_n g) \to p) \to p)) = 0$. Therefore this formula belongs to dL_m .

Let $D_1 = d\mathbf{L}_{k_1} \cap \ldots \cap d\mathbf{L}_{k_l}$ and $D_2 = d\mathbf{L}_{m_1} \cap \ldots \cap d\mathbf{L}_{m_n}$. Moreover let the following conditions be satisfied:

- (i) If a < b then $k_a > k_b$ and $m_a > m_b$.
- (ii) If $k_a > k_b \ (m_a > m_b)$ then $d\mathbb{E}_{k_a} \not\subseteq d\mathbb{E}_{k_b} \ (d\mathbb{E}_{m_a} \not\subseteq d\mathbb{E}_{m_b})$.

LEMMA 3. If $D_1 = D_2$ then l = n and $k_i = m_i$ for every $i, 1 \le i \le n$.

PROOF: Put $k > k_i$ and $k > m_j$ for every $i \in \{1, \ldots, l\}$ and $j \in \{1, \ldots, n\}$. Assume that $m_1 \neq k_1$. For example let $m_1 > k_1$. In virtute of Lemma 2, $\exists_k (((p \to_{k_1-1} g) \to p) \to p) \in D_1$. However $k-1 < m_1-1$. Therefore $\exists_k (((p \to_{k_1-1} g) \to p) \to p) \notin d\mathbb{L}_{m_1}$. Hence this formula does not belong to D_2 . This fact implies that $D_1 \neq D_2$ contrary to our assumption. Hence $m_1 = k_1$.

Now assume that b is the smallest number such that $k_b \neq m_b$. For example let $m_b < k_b$. Put $a = lcm(k_1 - 1, ..., k_l - 1, m_1 - 1, ..., m_n - 1)$ and $k_1^a = \frac{a}{k_1 - 1}, ..., m_n^a = \frac{a}{m_n - 1}$. Let $\alpha = \alpha(p)$ be a formula defined in the matrix $\overline{\mathcal{M}}_{a+1}$ in the following way:

$$(\cdot) \ \overline{\alpha}(\frac{x}{a}) \ \left\{ \begin{array}{l} <1 \quad \text{if } m_1^a|x \text{ or } \dots \text{ or } m_n^a|x, \\ =1 \quad \text{otherwise.} \end{array} \right.$$

It is easy to see that $\alpha \in D_2$. We shall show that $\alpha \notin D_1$.

Suppose that $\alpha \in dL_{k_b}$. Hence $\overline{\alpha}(\frac{1}{k_b-1}) = \overline{\alpha}(\frac{k_b^a}{a} < 1$. By (\cdot) we have that there exists an $i, 1 \le i \le n$, such that $m_i^a | k_b^a$. Therefore $k_b - 1 | m_i - 1$. Since $i \ge b$ then $m_i \le m_b$. Since $m_b < k_b$ then $m_i < k_b$, so $k_b - 1$ does not divide $m_i - 1$. Hence i < b. But then $m_i = k_i$. Therefore $k_b - 1 | k_i - 1$. This implies that $dL_{k_i} \subseteq dL_{k_b}$ contrary to our construction of D_1 . So we obtain $\alpha \not\in D_1$. Hence $D_1 \ne D_2$. This finishes the proof of Lemma 3.

Theorem 4. $g(dC_n) = g(C_n) = \sum_{a_1, \dots, a_k} P(a_i) + 1$, where the sequence $\{a_1, \dots, a_k\}$ has the following properties: $a_1 = n$; $a_1 > a_2 > \dots > a_k > 1$; for every $i \in \{1, \dots, k\}$ $a_i - 1 | n - 1$ and $P(a_i)$ is the number of all subsequences. Sc of $\{a_1, \dots, a_k\}$ such that: $a_i \in Sc$; for any $b \in Sc$, $a_i \geqslant b$; if $a_j, a_k \in Sc$ and $a_j < a_k$ then $a_j - a \not| a_k - 1$.

This theorem follows immediately from Lemma 3 and Theorem 2.

References

- [1] G. Malinowski, M. Spasowski, *Dual counterparts of Łukasiewicz sentential calculi*, **Studia Logica**, vol. XXXIII, 2 (1974).
- [2] A. Tarski, *Uber einige fundamentale Begriffe der Metamathematik*, Comptes Rendus des Séances de la Société des Sciences et des Lattres de Varsovie, vol. 23 (1930).
- [3] A. Tarski, Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften, Monatschefte f. Math. und Phys., vol. 37 (1930).
- [4] M. Tokarz, Invariant Systems of Łukasiewicz logics, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 20 (1974).
- [5] M. Tokarz, A new proof "topographic" theorem on Łukasiewicz's Logics, Reports on Mathematical Logic, no. 3 (1974).

The Section of Logic Institute of Philosophy and Sociology Polish Academy of Sciences