Teresa Zakrzewska

SOME REMARKS ON THREE-VALUED IMPLICATIVE SENTENTIAL CALCULI

Let \to , \vee , \wedge , \neg , f be functions defined on the set $\{2,1,0\}$ for which the following conditions are satisfied:

- (i) (A) $(x \to x) = 2$
 - (B) if $(x \rightarrow y) = 2$ and x = 2, then y = 2
 - (C) $(x \to 2) = 2$
 - (D) if $(x \rightarrow y) = 2$ and $(y \rightarrow z) = 2$, then $(x \rightarrow z) = 2$
 - (E) if $(x \to y) = 2$ and $(y \to x) = 2$, then x = y
- (ii) $x \wedge y = max(x, y)$
- (iii) $x \lor y = min(x, y)$
- (iv) fx = 0
- (v) $\neg x = (x \to fx)$

The matrix

$$Z = \langle \{2, 1, 0\}, \{2\}, \rightarrow, \lor, \land, \neg, f \rangle$$

will be called an *implicative three-valued matrix*.

Remark 1. The conditions (A) - (B) are analogous to those given by Rasiowa for the operation \rightarrow in an implicative algebra (see [1]).

Remark 2. There exist 32 mutually different three-valued matrices

$$Z_{(k)} = \langle \{2, 1, 0\}, \{2\}, \to, \lor, \land, \lnot_k, f \rangle$$

the functions of which satisfy the conditions (i) - (v).

By a (k)-implicative three-valued sentential calculus we shall understand any couple $S_k = (L_k, Cn_{(k)})$ where $L_k = \langle \mathcal{L}_k, \rightarrow_k, \vee, \wedge, \neg_k, f \rangle$ is a sentential

10 Teresa Zakrzewska

language and $Cn_{(k)}$ is a consequence determined by the (k)-implicative three-valued matrix $Z_{(k)}$.

From the remark given above it follows that there exists 32 such threevalued calculi. The individual calculi S_k differ from one another in the connectives of implication \to_k and negation \neg_k , while the connectives of disjunction, conjunction and falsum are determined by the same tables. The aim of this paper is to compare these calculi with respect to mutual definability of the connectives \to_k and \neg_k .

Let $S_k = (L_k, Cn_{(k)})$ be a (k)-implicative three-valued sentential calculus. We shall say that S_k is definitionally complete if and only if the (k)-implicative matrix $Z_{(k)}$ is functionally complete.

(k)-implicative matrix $Z_{(k)}$ is functionally complete. Let $S_k = (L_k, Cn_{(k)})$, $S_i = (L_i, Cn_{(i)})$ be two sentential calculi. S_k will be said to be definable in S_i , in symbols

$$S_k \subset S_i$$

if and only if the connective of implication \to_k (and therefore that of \neg_k) is definable in the calculus S_i . If $S_k \subset S_i$ and $S_i \subset S_k$ we shall say that S_k and S_i are mutually reconstructable in symbols

$$S_k \sim S_i$$

The symbols S_p, S_L, S_H, S_1 will be used to denote definitionally complete calculus, three-valued logic of Lukasiewicz, Heyting's three-valued calculus and the calculus with an implication \rightarrow_1 and negation \neg_1 being determined by the table

\rightarrow_1	2	1	0	\neg_1
2	2	1	1	1
1	2	2	2	2
0	2	1	2	2

respectively.

Now we define the sets $\overline{S}_p, \overline{S}_{I_1}, \overline{S}_H, \overline{S}_1$ as follows:

$$\begin{array}{lcl} \overline{S}_p & = & \{S_k: S_k \sim S_p\} \\ \overline{S}_{\mathbf{L}} & = & \{S_k: S_k \sim S_{\mathbf{L}}\} \\ \overline{S}_H & = & \{S_k: S_k \sim S_H\} \\ \overline{S}_1 & = & \{S_k: S_k \sim S_1\} \end{array}$$

The following theorem holds:

Theorem 2. The mutual reconstructability relation \sim determines a decomposition of the set of 32 calculi into four equivalence classes of \sim , namely \overline{S}_p , \overline{S}_L , \overline{S}_H , \overline{S}_1 , such that two calculi S_i , S_j belong to the same equivalence class if and only if $S_i \sim S_j$.

Let \overline{S}_k , \overline{S}_i be two equivalence classes. We shall say that \overline{S}_k is definable in \overline{S}_i , in symbols

$$\overline{S}_k \subset \overline{S}_i$$

if and only if there exist two calculi $S_j \in \overline{S}_k$ and $S_1 \in \overline{S}_i$ such that $S_j \subset S_1$. The following theorem gives relations between \overline{S}_p , \overline{S}_L , \overline{S}_H , \overline{S}_1 .

Theorem 3.

- (i) $\overline{S}_L \subset \overline{S}_p$, $\overline{S}_H \subset \overline{S}_p$, $\overline{S}_1 \subset \overline{S}_p$,
- $(i) \ \overline{S}_{p} \not\subset \overline{S}_{L}, \ \overline{S}_{p} \not\subset \overline{S}_{H}, \ \overline{S}_{p} \not\subset \overline{S}_{1}, \\ (ii) \ \overline{S}_{L} \not\subset \overline{S}_{1}, \ \overline{S}_{1} \not\subset \overline{S}_{L}, \\ (iii) \ \overline{S}_{L} \not\subset \overline{S}_{1}, \ \overline{S}_{1} \not\subset \overline{S}_{L}, \\ (iv) \ \overline{S}_{H} \subset \overline{S}_{L}, \ \overline{S}_{L} \not\subset \overline{S}_{H}, \\ (v) \ \overline{S}_{H} \not\subset \overline{S}_{1}, \ \overline{S}_{1} \not\subset \overline{S}_{H}.$

References

[1] H. Rasiowa, An algebraic approach to non classical logics, North-Holland Publ. Co. Amsterdam, PWN, Warszawa, 1974.

Institute of Philosophy Łódź University