Marian Maduch

ON LINDENBAUM'S ALGEBRAS OF FINITE IMPLICATIONAL ŁUKASIEWICZ'S LOGICS*

k+1 – valued implicational Lukasiewicz's logic (k being a nonnegative integer) is a system $S_k = \langle \underline{L}, Cn_k \rangle$ where $\underline{L} = \langle L, \rightarrow, T \rangle$ is a sentential implicational language with designated formula $T = p \rightarrow p$ and Cn_k is the consequence operation on L based on the rule of detachment $\alpha, \alpha \rightarrow \beta/\beta$ and an infinite set of the axioms (see [2]):

ax 1
$$\alpha \to (\beta \to \alpha)$$

ax 2 $(\alpha \to \beta) \to ((\beta \to \gamma) \to (\alpha \to \gamma))$
ax 3 $((\alpha \to \beta) \to \beta) \to ((\beta \to \alpha) \to \alpha)$
ax 4 $((\alpha \to \beta) \to (\beta \to \alpha)) \to (\beta \to \alpha)$
ax 5 $(\alpha \to (\alpha \to^k \beta)) \to (\alpha \to^k \beta)$
 $\alpha, \beta, \gamma \in L, \alpha \to^0 \beta = \beta \text{ and } \alpha \to^{i+1} \beta = \alpha \to (\alpha \to^i \beta).$

X is S_k – theory, $X \in TH$, iff $X \subseteq L$ and $Cn_k(X) = X$. X is irreducible S_k – theory, $X \in TH_*$, iff $X \in TH$ and for every nonempty family $R \subseteq TH$ not containing X we have $\bigcap R \neq X$ (see [1]). TH_* is a basis of TH i.e. $X = \bigcap \{Y : X \subseteq Y \in TH_*\}$ for any $X \in TH$. A sentential logic $\langle \underline{L}, Cn \rangle$ such that $Cn_k(X) \subseteq Cn(X)$ for any $X \subseteq L$ is said to be an implicational strengthening of S_k .

k+1 – valued implicational Łukasiewicz's matrix is the algebra $\underline{A}_k = \langle A_k, \rightarrow, k \rangle$, where $A_k = \{0, 1, \dots, k\}$ and $a \rightarrow b = \min(k, k-a+b)$ for $a, b \in A_k$. Let $S_k^* = \langle \underline{L}, Cn_k^* \rangle$ and $TAUT_k = Cn_k^*(\emptyset)$ where Cn_k^* is the matrix consequence operation defined an L as follows:

^{*}As abstract this article is not to be reviewed.

30 Marian Maduch

 $\alpha \not\in Cn_k^*(X)$ iff there exists a valuation $v: \underline{L} \mapsto \underline{A}_k$ such that $v(X) \subseteq \{k\}$ and $v(\alpha) \neq k$.

Using the suitable theses of S_k (cf. [3]) it is easy to verify that for any $X \in TH$ the relation $\underline{X} = \{\langle \alpha, \beta \rangle : \alpha \to \beta, \beta \to \alpha \in X\}$ is a congruence of the language \underline{L} and the equivalence class |T| of T coincides with X. A quotient algebra $\underline{L}/\underline{X} = \underline{L}/X = \langle L/X, \to, \bigvee_X \rangle$ where L/X is a quotient set and $\bigvee_X = |T|$ is said to be a Lindenbaum's algebra of the system S_k .

LEMMA. For any irreducible S_k – theory $X \in TH_*$ the Lindenbaum's algebra \underline{L}/X is isomorphic with some matrix \underline{A}_l , $l \leq k$.

PROOF. Making use of suitable theses of the system S_k and irreducibility of X one can prove that the relation $\leq \leq \{\langle a,b\rangle: a\to b=\bigvee_X\}$ is a linear ordering on L/X, \bigvee_X is the greatest element of that ordering and L/X has at most k+1 elements. Moreover, for any $a,b,c\in L/X$

- (1) $a \preccurlyeq \bigvee_X \to a$,
- (2) $a \preccurlyeq b$ implies $b \rightarrow c \preccurlyeq a \rightarrow c$,
- (3) $a \to c = b \to c \neq \bigvee_X \text{ implies } a = b.$

Let $L/X = \{a_0, a_1, \dots, a_l\}, l \leq k$, and moreover

$$a_0 \prec a_1 \prec \ldots \prec a_j \prec a_l = \bigvee_X$$
.

(" $a \prec b$ " is short for " $a \preccurlyeq b$ and $a \neq b$ "). According to the definition of \preccurlyeq we have $a_i \to a_j = a_l$ for $i \leqslant j$. If i > j, then by (1) – (3) we obtain

$$a_j \preccurlyeq a_l \rightarrow a_j \prec a_{l-1} \rightarrow a_j \prec \ldots \prec a_{i+1} \rightarrow a_j \prec a_i \rightarrow a_j \text{ and } a_i \rightarrow a_j \prec a_{i-1} \rightarrow a_j \prec \ldots \prec a_{j+1} \rightarrow a_j \prec a_j \rightarrow a_j = a_l.$$

Hence $a_i \to a_j = a_{\min(l,l-i+j)}$ for any i, j.

COROLLARY 1. (strong completeness theorem for S_k) $S_k = S_k^*$.

COROLLARY 2. (degree of maximality (see [4]) of S_k) The only structural implicational strengthenings of S_k are logics S_l , $l \leq k$.

COROLLARY 3. (degree of completeness of S_k) The only invariant S_k – theories (i.e. S_k – theories closed with respect to substitution) are sets $TAUT_l$, $l \leq k$.

Any algebra $\langle A, \rightarrow, \bigvee \rangle$ of the type $\langle 2, 0 \rangle$ fulfilling the axioms

$$\begin{split} &\text{i1. } a \rightarrow (b \rightarrow a) = \bigvee \\ &\text{i2. } (a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c)) = \bigvee \\ &\text{i3. } (a \rightarrow b) \rightarrow b = (b \rightarrow a) \rightarrow a \\ &\text{i4. } (a \rightarrow b) \rightarrow (b \rightarrow a) = b \rightarrow a \\ &\text{i5. } a \rightarrow (a \rightarrow^k b) = a \rightarrow^k b \\ &\text{i6. } \bigvee \rightarrow a = a \end{split}$$

will be called an LI_k -algebra. Dealing with implicative filters (see [1]) instead of S_k – theories, using the lemma given above, we obtain

THEOREM. The class of LI_k – algebras is the equational class generated by the matrix \underline{A}_k : $LI_k = HSP(\underline{A}_k)$.

References

- [1] H. Rasiowa, **An algebraic approach to non-classical logic**, North-Holl. and Publishing Company, Amsterdam, Polish Scientific Publishers, Warszawa, 1974.
- [2] A. Rose, Formalisation du calcul propositionnel implicativ a m valeurs de Lukasiewicz, Comptes Rendus Hebdomadaires des seances de l'Academie des Sciences, vol. 143 (1956), pp. 1263–1264.
- [3] A. Rose and J. B. Rosser, Fragments of many valued statement calculi, Transaction of American Mathematical Society, vol. 87 (1958), pp. 1–53.
- [4] R. Wójcicki, The logics stronger than three valued sentential calculus. The notion of degree of maximality versus the notion of degree of completeness, **Studia Logica**, vol. 33 (1974), pp. 201–214.

Higher Engineering School Opole