Marek Tokarz

A STRONGLY FINITE LOGIC WITH INFINITE DEGREE OF MAXIMALITY

This is a summary of a lecture read at the Seminar of the Section of Logic, Polish Academy of Sciences, Wrocław, March 1976.

Let $\underline{M} = \{M_i | i \in I\}$ be a set of logical matrices for a propositional language \underline{S} , each M_i being of the form (\underline{A}_i, B_i) , where: \underline{A}_i – an algebra similar to \underline{S} , B_i – the designated set. Define $C_{\underline{M}}$ by the condition: for every formula α of \underline{S} and every set X of formulas

$$\alpha \in C_M(X)$$
 iff $\forall i \in I \ \forall h : \underline{S} \to^{hom} \underline{A}_i \ (hX \subseteq B_i \Rightarrow h\alpha \in B_i).$

For any \underline{M} , $C_{\underline{M}}$ is a structural consequence operation (cf. [2]). A consequence operation C in \underline{S} is said to be *strongly finite* if there is some finite set \underline{M} of finite matrices, with $C = C_{\underline{M}}$.

Let C^1 , C^2 be two consequences in \underline{S} . We write $C^1 \leq C^2$ if for every set X of formulas, $C^1(X) \subseteq C^2(X)$. For any consequence operation C define the degree of maximality of C (see [4]) to be

$$card\{C^1: C^1 \text{ is a structural consequence and } C \leq C^1\}.$$

It is well-known that the degree of completeness of any strongly finite consequence is finite (cf. [5]). A conjecture in [6] is that so is the degree of maximality. In this paper a counterexample to this conjecture will be given.

Consider the following implicational-negational Sugihara matrix (cf. [1]): $M_4 = (\underline{A}_4, B_4)$, where $\underline{A}_4 = (A_4, \rightarrow, \sim)$, $A_4 = \{+2, +1, -1, -2\}$, $B_4 = \{+2, +1\}$, and

$$x \to y = \left\{ \begin{array}{ll} \max(\sim x,y) & \text{if } z \leqslant y, \\ \min(\sim x,y) & \text{otherwise.} \end{array} \right.$$

For any $a \in A_4$ define |a| to be a if a > 0 and -a otherwise. Let $\vartheta(\alpha)$ denote the set of all sentential variables occurring in α . A valuation h of formulas in M_4 is called *boolean* for if $|hp_i| = |hp_j|$ for all $p_i, p_j \in \vartheta(\alpha)$, and non-boolean otherwise.

Fix any infinite sequence $\alpha_1, \alpha_2, \alpha_3, \ldots$ of implicational-negational formulas with $\alpha_1 = \alpha_1(p_1, p_2)$, $\alpha_2 = \alpha_2(p_1, p_2, p_3)$, $\alpha_3 = \alpha_3(p_1, p_2, p_3, p_4)$, ..., which satisfies the following conditions:

- (a) α_i is a two-valued countertautology, all $i \in \omega$
- (b) for any non-boolean valuation h of α_i , $h\alpha_i \in B_4$.

It results from a definability criterion given in [3] that there exist formulas satisfying both (a) and (b).

Consider the sequence $\varrho_1, \varrho_2, \varrho_3, \ldots$ of rules of inference given by the schemes:

$$\varrho_1: \frac{\alpha_1}{p_0}; \ \varrho_2: \frac{\alpha_2}{p_0}; \ \dots \ ; \ \varrho_i: \frac{\alpha_i}{p_0}; \ \dots$$

Put C_4 to be $C_{\{M_4\}}$ and let us mark $C_{4+\varrho_i}$ to be the consequence operation arising from C_4 by strengthening C_4 with ϱ_i as a new rule of inference. $C_{4+\varrho_i}$ is structural, all $i \in \omega$, and it can be easily proved that

(A)
$$C_4 \leqslant C_{4+\varrho_1} \leqslant C_{4+\varrho_2} \leqslant \dots$$

On the other hand one can prove that

(B) for all substitutions ε , $\varepsilon \alpha_{i-1} \notin C_4(\alpha_i)$, all $i \ge 2$, and as a consequence we get $C_{4+\varrho_{i-1}} \ne C_{4+\varrho_i}$, all $i \ge 2$. Thus we can have (A) strengthened to the following:

(C)
$$C_4 < C_{4+\varrho_1} < C_{4+\varrho_2} < \dots$$

Now the following corollary immediately follows from (C):

COROLLARY. The degree of maximality of the strongly finite consequence operation C_4 is infinite.

52 Marek Tokarz

References

[1] J. M. Dunn, Algebraic completeness results for R-mingle and its extensions, **Journal of Symbolic Logic** 35 (1970), pp. 1–13.

- [2] J. Łoś and R. Suszko, *Remarks on sentential logics*, **Indagationes** Mathematicae 20 (1958), pp. 177-183.
- [3] M. Tokarz, Functions definable in Sugihara algebras and their fragments (I), Studia Logica 34 (1975), pp. 295–304.
- [4] R. Wójcicki, Degree of maximality versus degree of completeness, Bulletin of the Section of Logic 3, no. 2 (1974), pp. 41–43.
- [5] R. Wójcicki, On matrix representations of consequence operations of Lukasiewicz's sentential calculi, Zeitschrift für Mathematische Logik 19 (1973), pp. 239–247.
- [6] R. Wójcicki, The logics stronger than Łukasiewicz's three valued calculus the notion of degree of maximality versus the notion of degree of completeness, **Studia Logica** 33 (1974), pp. 201–214.

The Section of Logic Institute of Philosophy and Sociology Polish Academy of Sciences