Wacława Kielak

ENE-LOGIC

(Presented at the Seminar on Mathematical Logic, Silesian University at Katowice, May 28, 1976).

Professor Roman Suszko proposed to construct and study the ENE-logic, that is, sentential calculus with identity connective \equiv and truth-functional connectives of negation \neg and equivalence \Leftrightarrow . The construction makes use of three methods applied earlier in case of the EN-logic; see [1], [2].

Let \vdash be the smallest inference relation on the set of all formulas, FM, such that for all a, b, c, d in FM and all *finite* subsets X of FM the following conditions hold:

- $(1.1) \vdash a \equiv a$
- $(1.2) \ \ a \equiv b, c \equiv d \vdash (a \equiv c) \equiv (b \equiv d)$
- $(1.3) \ \ a \equiv b, c \equiv d \vdash (a \Leftrightarrow c) \equiv (b \Leftrightarrow d)$
- (1.4) $a \equiv b \vdash \neg a \equiv \neg b$
- $(2.1) \ a \equiv b \vdash a \Leftrightarrow b$
- (2.2) $a, a \Leftrightarrow b \vdash b$
- (2.3) $b, a \Leftrightarrow b \vdash a$
- (2.4) $a, b \vdash a \Leftrightarrow b$
- (3.1) $a, \neg a \vdash b$
- (3.2) if $X; a \vdash \neg b$ then $X; b \vdash \neg a$
- $(3.3) \ \neg a \Leftrightarrow \neg b \vdash a \Leftrightarrow b.$

Let LV be the set of all functions $t:FM\to\{1,0\}$ such that for all a,b,c,d in FM:

ENE-logic 85

- $(4.1) \ t(a \equiv a) = 1$
- (4.2) if $t(a \equiv b) = t(c \equiv d) = 1$ then $t((a \equiv c) \equiv (b \equiv d)) = 1$
- (4.3) if $t(a \equiv b) = t(c \equiv d) = 1$ then $t((a \Leftrightarrow c) \equiv (b \Leftrightarrow d)) = 1$
- (4.4) if $t(a \equiv b) = 1$ then $t(\neg a \equiv \neg b) = 1$
- (4.5) if $t(a \equiv b) = 1$ then t(a) = t(b)
- (5.1) $t(a \Leftrightarrow b) = 1 \text{ iff } t(a) = t(b)$
- $(5.2) \ t(\neg a) \neq t(a).$

A (normal) model is a pair $\underline{M} = \langle \underline{A}, F \rangle$ where \underline{A} is an algebra similar to the language \underline{L} , $\underline{A} = \langle A, \circ, \div, - \rangle$ and F is a subset of A such that for all a, b in A:

- (6.1) $a \circ b$ is in F iff a = b
- (6.2) a
 ildot b is in F iff either both a, b are in F or both a, b are not in F
- (6.3) -a is in F iff a is not in F.

We write: $F = F_{\underline{M}}$ and $\underline{A} = alg(\underline{M})$.

THEOREM. For every a in FM and each subset X of FM the following three conditions are equivalent:

- (A) for all t in LV: t(a) = 1 whenever $t(X) = \{1\}$,
- (B) for every model \underline{M} and all h in $Hom(\underline{L}, alg(\underline{M}))$, h(a) is in $F_{\underline{M}}$ whenever h(X) is included in F_{M} ,
- (C) there exists a finite subset Y of X such that $Y \vdash a$.

One can weaken the inference relation \vdash to meet intuitionistic requirements concerning connectives \neg and \Leftrightarrow . The *ENE*-logic is suitable for detailed studies of the difference and analogy of connectives \equiv and \Leftrightarrow .

References

[1] Aileen Michaels and Roman Suszko, EN-logic, Bulletin of the Section of Logic, vol. 3, no. 1, p. 13.

86 Wacława Kielak

[2] Aileen Michaels and Roman Suszko, Sentential Calculus of Identity and Negation, submitted to Reports on Mathematical Logic (Cracow, Poland).

Higher Pedagogical Institute Siedlee, Poland