Bulletin of the Section of Logic Volume 5/3 (1976), pp. 103–104 reedition 2011 [original edition, pp. 103–105]

Wolfgang Rautenberg

SOME PROPERTIES OF THE HIERARCHY OF MODAL LOGICS

(Preliminary report)

PROPOSITION 1. If $M \supseteq S4$ is finite then M has only finitely many ip's all of which are finite. The same holds for the extensions of $T[\Box p \to \Box \Box p]$.

PROPOSITION 2. If n is prime then $M\mathbf{C}_n$ is an ip of M.

Hence M has infinitely many ip's in EM^0 . Next we are concerned with criteria of Jankov type.

PROPOSITION 3. S4[P] = S5 iff $P \in S5$ and $P \notin M \overline{\cdot - \cdot}$

Define rank of P by recursion: $rk \ p = 0$ (p variable); $rk \ \neg P = rk \ P$; $rk \ P \wedge Q = max\{rk \ P, rk \ Q\}$; $rk \ \Box P = rk \ P+1$. E.g. $rk \ (\Box p \rightarrow \Box \Diamond p) = 2$.

Proposition 4. Never $M^0[P] = S4$, S5 or B, if $rk P \leq 1$ (B Brouwer's system).

PROPOSITION 5. If $rk\ P=2$ then M[P]=S4 iff $P\in S4$ and $\not\in MG$ for each $G=\overbrace{\cdot\rightarrow\cdot\rightarrow\cdot}$, $\overbrace{\cdot\rightarrow\cdot}$, $\overbrace{\cdot\rightarrow\cdot}$,

PROPOSITION 6. If $rk\ P=2$ then $M^0[P]=B$ iff $P\in B$ and $P\not\in M$

E.g. $B=M^0[Q],\ Q=p\to\Box\Diamond p$ (Brouwer's axiom). By Prop. 6 for instance also $B=M^0[p\wedge\Diamond q\to\Diamond(q\wedge\Diamond p)]$. The "seven graph criterion" (Prop. 5) may also be extended to a criterion for $rk\ P=3,4,\ldots$

It is known that S5 has one ip in ES4 only. The situation completely changes if we pass to EM^0 .

Proposition 7. S4, B, S5 have infinitely many ip's is EM^0 .

Let us finally state the following

Conjecture. All ip's of any finite M (in EM^0) are finite.

Freie Universität West-Berlin