Bulletin of the Section of Logic Volume 5/3 (1976), pp. 115–119 reedition 2011 [original edition, pp. 115–121]

Andrzej Wroński

THE NUMBER OF QUASIVARIETIES OF DISTRIBUTIVE LATTICES WITH PSEUDOCOMPLEMENTATION

This is an abstract of the submitted to Report on Mathematical Logic.

Following Grätzer [2] by a distributive lattice with pseudocomplementation we mean an algebra $\mathcal{A} = \langle A, \wedge, \vee, \neg, 0_{\mathcal{A}}, 1_{\mathcal{A}} \rangle$ of type $\langle 2, 2, 1, 0, 0 \rangle$ such that $\langle A, \wedge, \vee, 0_{\mathcal{A}}, 1_{\mathcal{A}} \rangle$ is a bounded distributive lattice and for every $a \in A$, $\neg a$ is the pseudocomplement of a (i.e. the greatest element of the set $\{x: x \in A, x \wedge a = 0\}$). Let \mathbb{D} be the class of distributive lattices with pseudocomplementation. It is known that \mathbb{D} is a variety (see [5]) and a nice characterization of the lattice of subvarieties of \mathbb{D} is to be found in [3] (it is a denumerable lattice dually isomorphic to the ordinal ω^+). In this paper we will prove that the family of all subsets of a denumerably infinite set ordered by the inclusion is isomorphic to a family of quasivarieties of distributive lattices with pseudocomplementation. This result is a solution of the problem 63 of Grätzer [2] because it yields that the number of quasivarieties of distributive lattices with pseudocomplementation is 2^{\aleph_0} .

Let $\mathcal{T} = \langle T, \wedge, \vee, \neg, 0, 1 \rangle$ be the free algebra of terms of type $\langle 2, 2, 1, 0, 0 \rangle$ free-generated by a denumerably infinite set of variables $V = \{z_0, z_1, \ldots\}$. By an identity we mean an expression of the form $\alpha \equiv \beta$ where α and β are terms of T. The symbol Id denotes the set of all identities. By an implication we mean an expression of the form $X \to \alpha \equiv \beta$ where $\alpha \equiv \beta$ is an identity and X is a finite (possibly empty) set of identities.

Given an algebra $\mathcal{A} \in \mathbb{D}$, a valuation in \mathcal{A} is an arbitrary homomorphism v of the algebra \mathcal{T} into \mathcal{A} . An identity $\alpha \equiv \beta$ is satisfied by the valuation v iff $v(\alpha) = v(\beta)$. The symbol Id(v) denotes the set of all identities that are satisfied by v and $Id(\mathcal{A}) = \bigcap (Id(v) : v$ is a valuation in \mathcal{A}). An implication $X \to \alpha \equiv \beta$ is satisfied by the valuation v iff $X \subseteq Id(v)$

116 Andrzej Wroński

implies that $\alpha \equiv \beta \in Id(v)$. The symbol Im(v) denotes the set of all implications that are satisfied by v and $Im(A) = \bigcap (Im(v) : v$ is a valuation in A).

A class \mathbb{K} of algebras of the same type is a variety iff for some set of identities X, $\mathbb{K} = \{A : X \subseteq Id(A)\}$. The class \mathbb{K} is a quasivariety iff for some set of implications Y, $\mathbb{K} = \{A : Y \subseteq Im(A)\}$. A characterization of quasivarieties of algebras was given by Malcev [4]. It should be noted that a quasivariety is closed under the formation of subalgebras and direct products (see [4]).

A convenient method of constructing distributive lattices with pseudocomplementation satisfying a prescribed set of implications can be obtained by transferring to lattice theory the following technique of forcing which is very familiar in logic.

Let $\mathcal{A} = \langle A, \leq \rangle$ be a partially ordered set. A binary relation $\Vdash \subseteq A \times T$ is called a forcing on \mathcal{A} iff for every $a, b \in A$, $\alpha, \beta \in T$ the following conditions hold (see [6]):

- (i) For every $z \in V$, if $a \Vdash z$ and $a \leq b$ then $b \Vdash z$;
- (ii) $a \Vdash 1$;
- (iii) $a \Vdash 0 \ (\not\Vdash \text{ denotes the complement of } \Vdash);$
- (iv) $a \Vdash \alpha \land \beta$ iff $a \Vdash \alpha$ and $a \Vdash \beta$;
- (v) $a \Vdash \alpha \lor \beta$ iff $a \Vdash \alpha$ or $a \Vdash \beta$;
- (vi) $a \Vdash \neg \beta$ iff for every $b \geqslant a, b \not\Vdash \beta$.

Lemma 1. (see [6]).

- (i) Every relation $\Vdash_{\triangleright} \subseteq A \times V$ satisfying the condition (i) of the above definition can be extended (uniquely) to a forcing relation \Vdash on A.
- (ii) For every forcing \Vdash on A, $a, b \in A$ and $\alpha \in T$ if $a \Vdash \alpha$ and $a \leqslant b$ then $b \Vdash \alpha$.

We say that an identity $\alpha \equiv \beta$ is satisfied by a forcing \Vdash on \mathcal{A} iff for every $a \in A$, $a \Vdash \alpha$ iff $a \Vdash \beta$. The symbol $Id(\Vdash)$ denotes the set of all identities that are satisfied by \Vdash and $Id(\mathcal{A}) = \bigcap (Id(\Vdash) : \Vdash$ is a forcing on \mathcal{A}). An implication $X \to \alpha \equiv \beta$ is satisfied by \Vdash iff $X \subseteq Id(\Vdash)$ implies that $\alpha \equiv \beta \in Id(\Vdash)$. The symbol $Im(\Vdash)$ denotes the set of all implications that are satisfied by \Vdash and $Im(\mathcal{A}) = \bigcap (Im(\Vdash) : \Vdash$ is a forcing on \mathcal{A}).

Following Birkhoff [1] we say that a partially ordered set is inductive iff every chain of its elements has an upper bound.

LEMMA 2. If $A = \langle A, \leqslant \rangle$ is inductive, $a \in A$ and $\alpha \in T$ then for every forcing relation \vdash on A the following conditions are equivalent:

- (i) $a \Vdash \neg \alpha$,
- (ii) for every maximal element $b \in A$ such that $a \leq b$, $b \not \vdash \alpha$.

For every partially ordered set $\mathcal{A} = \langle A, \leqslant \rangle$ let $\Gamma(\mathcal{A})$ be the distributive lattice with pseudocomplementation of all hereditary subsets of A (see [2]). Recall that $B \subseteq A$ is hereditary iff for every $b \in B$, if $a \in A$ and $b \leqslant a$ then $a \in B$. If $H(\mathcal{A})$ is the family of all hereditary subsets of A then $\Gamma(\mathcal{A}) = \langle H(\mathcal{A}), \cap, \cup, \neg, \emptyset, A \rangle$ where for every $\Phi \in H(\mathcal{A}), \neg \Phi = \bigcup (\Psi : \Psi \in H(\mathcal{A}), \Psi \cap \Phi = \emptyset)$.

LEMMA 3. $Im(A) = Im(\Gamma(A))$.

Let N be the set of all natural numbers. It will be convenient to identity a natural number n with the set of all natural numbers that are smaller than n. For every $n \subseteq N - \{0, 1\}$ we define the corresponding implication Π_n putting:

$$\Pi_n = \neg \neg \bigvee (\neg z_i : i \in n) \equiv \bigvee (\neg z_i : i \in n) \Rightarrow$$

$$\Rightarrow 1 \equiv \bigvee (\neg (z_i \land \bigwedge (\neg z_j : j \in n - \{i\})) : i \in n).$$

To explain what the implication Π_n says we need the following definitions. An element a of an algebra $\mathcal{A} \in \mathbb{D}$ is called skeletal (see [2]) iff for some $b \in A$, $a = \neg b$. A finite set B of elements of an algebra $\mathcal{A} \in \mathbb{D}$ is meet-independent iff for every $C \subsetneq B$, $\bigwedge C \neq \bigwedge B$. Now we can state the following:

THEOREM 1. If $A \in \mathbb{D}$ is such that the set of all non-unit skeletal elements of A can be extended to a proper ideal then the following conditions are equivalent:

- (i) $\Pi_n \in Im(\mathcal{A})$,
- (ii) there is no meet-independent n-element set of skeletal elements of A whose join also is skeletal.

For every $n \in N$ let P_n be the family of all n-element subsets of N. For every $I \subset N - \{0,1\}$ let $S_I = \bigcup (P_n : n \in I \cup \{1\}) \cup \{N\}$. Thus, for every $I \subseteq N - \{0,1\}$ we have the corresponding partially ordered set $S_I = \langle S_I, \supset \rangle$.

118 Andrzej Wroński

It is obvious that all the maximal elements of S_I are singletons from P_1 , the smallest element of S_I is N and every ascending chain of elements of S_I is finite which immediately yields that S_I must be inductive.

LEMMA 4. For every $I \subseteq N - \{0,1\}$ and $n \in N - \{0,1\}$ the following conditions are equivalent:

- (i) $\Pi_n \in Im(\mathcal{S}_I)$,
- (ii) $n \in I$.

For every $I \subseteq N - \{0,1\}$ we define a set of implications $\Pi(I) = \{\Pi_n : n \in I\}$ and the corresponding quasivariety $\mathbb{K}(I) = \{\mathcal{A} : \mathcal{A} \in \mathbb{D}, \Pi(I) \subseteq Im(\mathcal{A}).$

Applying Lemma 3 and Lemma 4 we get main result of this paper:

Theorem 2. For every $I, J \subseteq N - \{0, 1\}$, $\mathbb{K}(I) \subseteq \mathbb{K}(J)$ iff $I \supseteq J$.

PROOF. Immediate, by Lemma 3 and Lemma 4. Q.E.D.

COROLLARY. There exist 2^{\aleph_0} of quasivarieties of distributive lattices with pseudocomplementation.

References

- [1] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., vol. 25, third edition, Amer. Math. Soc., New York, 1967.
- [2] G. Grätzer, **Lattice theory**, W. H. Freeman and Co., San Francisco, 1971.
- [3] K. B. Lee, Equational classes of distributive pseudo-complemented lattices, Canad. J. Math., 22 (1970), pp. 881–891.
- [4] A. I. Malcev, Quasiprimitive classes of abstract algebras (Russian), **Dokl. Akad. Nauk SSSR** 108 (1956), pp. 187–189.
- [5] P. Ribenboim, Characterization of the sup-complement in a distributive lattice with last element, Summa Brasil. Math. 2 (1949), pp. 43–49.
- [6] C. Smorynski, Investigations of the intuitionistic formal systems by means of Kripke models, Doctoral dissertation, Stanford University, 1972.

Department of Logic Jagiellonian University Cracow