Andrzej Wroński

REMARKS ON HALLDEN COMPLETENESS OF MODAL AND INTERMEDIATE LOGICS

This is a lecture read at the XII Conference on History of Logic, Cracow, July 5-9, 1976.

Let $\mathbb{T} = \langle T, \wedge, \vee, \rightarrow, \neg, L \rangle$ be the free algebra of terms of the type 2, 2, 2, 1, 1 free generated by an infinite set of variables V. The symbol $V(\alpha)$ denotes the set of all variables occurring in the term α and TH denotes the set of all terms which are theorems of the classical propositional calculus. The following definition seems to be in accordance with the intention of E. Lemmon [2]; a set of term \mathcal{L} is a modal logic iff the following conditions are satisfied:

- (1) \mathcal{L} is a proper subset of T and $TH \subseteq \mathcal{L}$,
- (2) \mathcal{L} is closed under the detachment rule i.e. for every $\alpha, \beta \in T$, if $\alpha, \alpha \to \beta \in \mathcal{L}$ then $\beta \in \mathcal{L}$,
- (3) \mathcal{L} is closed under the substitution rule i.e. for every $\varepsilon \in Hom(\mathbb{T}, \mathbb{T})$, if $\alpha \in \mathcal{L}$ then $\varepsilon(\alpha) \in \mathcal{L}$.

We say that a modal logic \mathcal{L} is closed under the extensionality rule iff for every $\alpha, \beta \in T$, if $\alpha \to \beta, \beta \to \alpha \in \mathcal{L}$ then $L\alpha \to L\beta, L\beta \to L\alpha \in \mathcal{L}$. The symbol \mathcal{B} will be reserved for the smallest modal logic closed under the extensionality rule. A modal algebra is any algebra $\mathbb{A} = \langle A, \wedge, \vee, \to, \neg, L \rangle$ of the type $\langle 2, 2, 2, 1, 1 \rangle$. The reduct of a modal algebra \mathbb{A} is the algebra $\mathcal{R}(\mathbb{A}) = \langle A, \wedge, \vee, \to, \neg \rangle$ obtained by discarding the modal operator L of \mathbb{A} . A modal matrix is any pair $\langle \mathbb{A}, D \rangle$ where \mathbb{A} is a modal algebra and D is a subset of the carrier of \mathbb{A} . The content of the matrix $\langle \mathbb{A}, D \rangle$ will be denoted by $E\langle \mathbb{A}, D \rangle$. Recall that $E\langle \mathbb{A}, D \rangle = \{\alpha \in T : \text{ for every } \vartheta \in Hom(\mathbb{T}, \mathbb{A}), \vartheta(\alpha) \in D\}$. A modal matrix $\langle \mathbb{A}, D \rangle$ will be called special if $\mathcal{R}(\mathbb{A})$ is a

Boolean algebra and D is an ultrafilter of $\mathcal{R}(\mathbb{A})$. Recall the following well-known result:

THEOREM 1. (see e.g. Hansson, Gärdenfors [1]). For every modal logic \mathcal{L} the following conditions are equivalent:

- (i) $\mathcal{B} \subseteq \mathcal{L}$
- (ii) $\mathcal{L} = E\langle \mathbb{A}, D \rangle$ for some modal matrix $\langle \mathbb{A}, D \rangle$ such that $\mathcal{R}(\mathbb{A})$ is a Boolean algebra,
- (iii) $\mathcal{L} = E\langle \mathbb{A}, D \rangle$ for some modal matrix $\langle \mathbb{A}, D \rangle$ such that $\mathcal{R}(\mathbb{A})$ is a Boolean algebra and D is a proper filter of $\mathcal{R}(\mathbb{A})$.

Following J. C. C. McKinsey [4] we say that a modal logic \mathcal{L} is Hallden complete (*H*-complete) iff for every $\alpha, \beta \in T$ such that $V(\alpha) \cap V(\beta) = \emptyset$, if $\alpha \vee \beta \in \mathcal{L}$ then $\{\alpha, \beta\} \cap \mathcal{L} \neq \emptyset$. Let us note the well-known:

THEOREM 2. (see McKinsey [4] and Lemmon [2]). If $\langle \mathbb{A}, D \rangle$ is a special modal matrix then $R\langle \mathbb{A}, D \rangle$ is a H-complete modal logic.

E. Lemmon [2] posed the question whether the converse of the theorem above is true i.e. whether for every H-complete modal logic \mathcal{L} there exists a special modal matrix $\langle \mathbb{A}, D \rangle$ such that $\mathcal{L} = E \langle \mathbb{A}, D \rangle$. In view of Theorem 1 this question is interesting only for modal logics containing \mathcal{B} . We shall prove that for such modal the answer is affirmative.

PROPOSITION 1. For every modal logic \mathcal{L} such that $\mathcal{B} \subseteq \mathcal{L}$ the following conditions are equivalent:

- (i) \mathcal{L} is H-complete,
- (ii) $\mathcal{L} = E(\mathbb{A}, D)$ for some special modal matrix (\mathbb{A}, D) .

PROOF. We need only to show that (i) implies (ii). Since $\mathcal{B} \subseteq \mathcal{L}$ than by Theorem 1 it follows that there exists a modal matrix $\langle \mathbb{A}, D \rangle$ such that $\mathcal{R}(\mathbb{A})$ is a Boolean algebra, D is a proper filter of $\mathcal{R}(\mathbb{A})$ and $\mathcal{L} = E\langle \mathbb{A}, D \rangle$. Let $\{D_i : i \in I\}$ be the family of all ultrafilters of $\mathcal{R}(\mathbb{A})$ containing the filter D. Then $D = \bigcap \{D_i : i \in I\}$ and consequently $\mathcal{L} = \bigcap \{E\langle \mathbb{A}, D_i \rangle : i \in I\}$. For every formula $\alpha \in T$ we put $ver(\alpha) = \{i \in I : \alpha \in E\langle \mathbb{A}, D_i \rangle\}$ and $ref(\alpha) = I - ver(\alpha)$. Then assuming H-completeness of \mathcal{L} it is easy to infer that the family $\{ref(\alpha) : \alpha \in T - \mathcal{L}\}$ has the finite intersection property. Now let Δ be an ultrafilter of the Boolean algebra of all subsets of I such that $\{ref(\alpha) : \alpha \in T - \mathcal{L}\} \subseteq \Delta$. Then it is easy to check

128 Andrzej Wroński

that the ultraproduct $\prod_{\triangle}(\langle \mathbb{A}, D_i \rangle : i \in I)$ is a special modal matrix and $\mathcal{L} = E(\prod_{\triangle}(\langle \mathbb{A}, D_i \rangle : i \in I))$. Q.E.D.

Applying the same method one obtains the following characterization of H-complete intermediate logics:

PROPOSITION 2. For every intermediate logic \mathcal{L} the following conditions are equivalent:

- (i) \mathcal{L} is H-complete,
- (ii) $\mathcal{L} = E(\mathbb{A})$ for some well-connected pseudo-Boolean algebra \mathbb{A} ,
- (iii) $\mathcal{L} = E(\mathbb{A})$ for some strongly compact pseudo-Boolean algebra \mathbb{A} .

Recall that a pseudo-Boolean algebra $\mathbb A$ is well-connected iff the family of non-trivial filters of $\mathbb A$ is closed under finite intersections. The notion of well-connected pseudo-Boolean algebra is due to Professor R. Suszko who conjuctured the equivalence of (i) and (ii) of Proposition 2. A pseudo-Boolean algebra is strongly compact iff it has the smallest non-trivial filter. It should be noted that a pseudo-Boolean algebra is strongly compact iff it is non-degenerate and subdirectly indecomposable (see [3]).

References

- [1] B. Hansson, P. Gärdenfors, Aguide to intensional semantics, [in:] Modality, Morality and Other Essays on Sense and Nonsense, Ed. S. Kanger, Lound, 1973, pp. 151–167.
- [2] E. Lemmon, A note on Hallden incompleteness, Notre Dame Journal of Formal Logic 7 (1966), pp. 296–300.
- [3] C. G. McKay, On finite logics, Indagationes Mathematicae 29 (1967), pp. 363–365.
- [4] J. C. C. McKinsey, Systems of modal logics which are not unreasonable in the sense of Hallden, **The Journal of Symbolic Logic** 18 (1953), pp. 109–113.

Department of Logic Jagiellonian University, Cracow