Andrzej Wroński

THE NUMBER OF ISOMORPHISM TYPES OF SUBDIRECTLY INDECOMPOSABLE PSEUDO-BOOLEAN ALGEBRAS

This is an abstract of the paper submitted to Reports on Mathematical Logic.

For every $n=1,2,\ldots$ let $\mathcal{T}(n)$ be the number of isomorphism types of subdirectly indecompossable pseudo-Boolean algebras having n-element generating set. It is known that $\mathcal{T}(1) = \aleph_0$ (see [1]) and $\mathcal{T}(3) = 2^{\aleph_0}$ (see [4]). In this paper we answer the question in the only remaining case by proving that $\mathcal{T}(2) = 2^{\aleph_0}$. Clearly this implies that $\mathcal{T}(n) = 2^{\aleph_0}$ for every $n \geq 2$.

For the terminology and notation the reader is referred to [4]. We will make use of the sequence of algebras $\vartheta_0, \vartheta_1, \ldots$ and the corresponding sequence of formulas of two variables $\delta_0, \delta_1, \ldots$ that are described in [4] in detail. Interesting properties of algebras and formulas mentioned above were first observed by Gerčiu, Kuznecov [2]. In particular, from a result of [2] it follows that for every $i, j = 0, 1, \ldots; \ \delta_i \in E(\vartheta_j)$ iff $i \neq j$. For every $I \in \{0, 1, \ldots\}$ such that $|I| \geqslant 2$ we define intermediate logic $P(I) = \bigcap (E(\vartheta_i) : i \in I)$. Let \Im_2 be the free algebra of formulas of two variables, then we have the following:

Lemma 1.

- (i) The unit element of the algebra $\Im_2/\equiv_{P(I)}$ is join-reducible;
- (ii) $E(\Im_2/\equiv_{P(I)})\subseteq E(\Im_2/\equiv_{P(J)})$ iff $I\supseteq J$.

LEMMA 2. Let A be a pseudo-Boolean algebra generated by a set G. If the unit element of the algebra A is join-reducible then the set G generates the algebra $A \oplus$.

THEOREM. The number of isomorphism types of subdirectly indecomposable pseudo-Boolean algebras having a two-element generating set is 2^{\aleph_0} .

PROOF. Consider all the pseudo-Boolean algebras of the form $(\Im_2/\equiv_{P(I)})\oplus$, $I\subseteq\{0,1,\ldots\}$, $|I|\geqslant 2$. By Lemma 1 (ii) we get that $(\Im_2/\equiv_{P(I)})\oplus$ and $(\Im_2/\equiv_{P(J)})\oplus$ are non-isomorphic whenever $I\neq J$. By Lemma 1(i) and Lemma 2 it follows that every algebra $(\Im_2/\equiv_{P(I)})\oplus$ has a two-element generating set and it is subdirectly indecomposable because it has the smallest non-trivial filter. Q.E.D.

REMARK. Applying Lemma 3 of [3] one gets the result a little bit stronger then the theorem above, namely: there exist 2^{\aleph_0} equational classes of pseudo-Boolean algebras that are generated by single subdirectly indecomposable algebras with two-element generating sets.

References

- [1] L. Rieger, On the lattice theory of Brouwerian propositional logic, Acta facultatis rerum naturalium Universitas Carolinae 189 (1949), pp. 1–40.
- [2] V. Ja. Gerciu, A. V. Kuznecov, On finitely axiomatizable superintuitionistic logics, **Dokl. Akad. Nauk SSSR** 159 (1970), pp. 1262-1266 = **Soviet Math. Dokl.** 11 (1970), pp. 1654-1658.
- [3] E. Graczyńska, A. Wroński, Constructing denumerable matrices strongly adequate for pre-finite logics, Studia Logica 33 (1974), pp. 417–423.
- [4] A. Wroński, On cardinalities of matrices strongly adequate for the intuitionistic propositional logic, Reports on Mathematical Logic 3 (1974), pp. 67–72.

Department of Logic Jagiellonian University, Cracow