Jacek Hawranek and Marek Tokarz

MATRICES FOR PREDICATE LOGICS

This is an abstract of a lecture read at the seminar of the Section of Logic, Polish Academy of Sciences, Wrocław, October 1976.

Let \underline{F} be the set of all formulas built up by means of individual variables x_1, x_2, \ldots , predicate letters P_1, P_2, \ldots (P_i being a $\lambda(i)$ -ary predicate letter), connectives F_1, \ldots, F_n , and quantifiers \forall and \exists , according to the usual definition of a formula.

By a (logical) matrix for \underline{F} we shall mean any sequence $\underline{M} = (M, f_1, \ldots, f_n, \cap, \cup, B)$, where M is a non-empty set, $B \subseteq M$, (M, f_1, \ldots, f_n) is an algebra similar to $(\underline{F}, F_1, \ldots, F_n)$, and both \cap and \cup are functions from 2^M into M.

By a structure connected with \underline{M} (or simply a structure if \underline{M} is fixed up) we mean any sequence $\underline{A} = (A, R_1, R_2, \ldots)$ where A is a non-empty set and for all $i \in \omega$, R_i is a function from $A^{\lambda(i)}$ into M. Let us denote $V = \{x_1, x_2, \ldots\}$. A valuation of \underline{F} in \underline{A} (where \underline{A} is connected with \underline{M}) is any function φ from $V \cup \underline{F}$ into $A \cup M$ such that

$$\varphi(V) \subseteq A
\varphi(P_i x_{j_i} \dots x_{j_{\lambda(i)}}) = R_i(\varphi x_{j_i}, \dots, \varphi x_{j_{\lambda(i)}})
\varphi(F_i \alpha_1 \dots \alpha_k) = f_i(\varphi \alpha_1, \dots, \varphi \alpha_k)
\varphi(\forall x_i \alpha) = \bigcap \{\varphi' \alpha : \varphi' =_i \varphi\}
\varphi(\exists x_i \alpha) = \bigcup \{\varphi' \alpha : \varphi' =_i \varphi\}$$

where " $\varphi' =_i \varphi$ " stands for " $\varphi'(x_j) = \varphi(x_j)$ for all $j \neq i$ ". (Structure in a very similar sense are discussed e.g. in [1], [6].)

Let $V(\alpha)$ denote the set of all variables free in α , and let $\alpha[x_i/x_j]$ denote the result of substituting x_j for all free occurrences of x_i in α , with normal restrictions. If α, β are formulas $(\alpha, \beta \in \underline{F})$ then we shall

say that α and β are similar, (in symbols $\alpha \sim \beta$), if one of them can be obtained from the other by changing some bound variables. A function $e: \underline{F} \to \underline{F}$ is said to be a substitution if e is a homomorphism with respect to $F_1, \ldots, F_n, \forall x_1, \forall x_2, \ldots, \exists x_1, \ldots$ and the following conditions are satisfied:

- (a) $V(e\alpha) \subseteq V(\alpha)$, all $\alpha \in \underline{F}$
- (b) for every atomic $\alpha \in \underline{F}$, and for every $i, j \in \omega$, there is some $\alpha' \in \underline{F}$ of a special form, see [3], such that $e\alpha \sim \alpha'$ and $e(\alpha[x_i/x_j]) \sim \alpha'[x_i/x_j]$.

(A detailed discussion of the notion of substitution in languages with quantifiers is contained in [3] and [4].)

Any pair $\underline{L} = (\underline{F}, C)$, where $C: 2^{\underline{F}} \to 2^{\underline{F}}$ satisfies the well-known Tarski's postulates for a consequence operation (cf. [5]), is called a *logic*. \underline{L} is *finite* (and so is C) provided that $\alpha \in \bigcup \{C(Y): Y \subseteq X \text{ and } \underline{Y} < \aleph_0\}$ whenever $\alpha \in C(X)$. \underline{L} is *structural* (and so is C) provided that $e\overline{C}(X) \subseteq C(eX)$, for all $X \subseteq \underline{F}$ and for all substitutions e. $C_1 \leqslant C_2$ stands for " $C_1(X) \subseteq C_2(X)$, all $X \subseteq \underline{F}$ ".

Let \underline{F} be the set of all formulas in some language, and let $\underline{M}=(M,f_1,\ldots,f_n,\cap,\cup,B)$ be a matrix for \underline{F} . Define operations $C_{\underline{M}}$, $C_{\underline{M}}^*$ and $\overline{C}_{\underline{M}}$ on $2^{\underline{F}}$ by

- (A) $\alpha \in C_{\underline{M}}(X)$ iff for every structure \underline{A} connected with \underline{M} and for every valuation φ of \underline{F} in \underline{A} , if $\varphi X \subseteq B$ then $\varphi \alpha \in B$ (comp. [2] for the case of sentential logics).
- (B) $\alpha \in C_{\underline{M}}^*(X)$ iff for every structure \underline{A} connected with \underline{M} if for every valuation φ of \underline{F} in \underline{A} , $\varphi X \subseteq B$, then for every valuation φ of \underline{F} in \underline{A} , $\varphi \alpha \in B$.
- (C) $\alpha \in \overline{C}_{\underline{M}}(X)$ iff $\varphi \alpha \in B$ for every valuation φ of \underline{F} in any structure, whenever $\varphi X \subseteq B$ for every valuation φ of \underline{F} in any structure.

One can easily check it that each one of the operations defined in (A), (B), (C) is a consequence in \underline{F} . Moreover

Theorem 1. For all \underline{M} :

- a. Both $C_{\underline{M}}$ and $C_{\underline{M}}^*$ are structural.
- b. $\overline{C}_{\underline{M}}$ is Post-complete.
- $c. \ \ C_{\underline{M}}^{-} \leqslant C_{\underline{M}}^{*} \leqslant \underline{C}_{\underline{M}}.$

(Note that \overline{C}_M is not in general a structural consequence operation.)

Theorem 2. If \underline{M} is a finite matrix then $C_{\underline{M}}$ $(C_{\underline{M}}^*, \overline{C}_{\underline{M}})$ is a finite consequence operation.

Now consider the following new notion of a matrix consequence. Let \underline{M} and \underline{F} be as above, and let h be a function from \underline{F} into M. Then h is said to be a *valuation* of \underline{F} in \underline{M} provided that the following conditions hold:

$$hF_i\alpha_1\dots\alpha_k = f_i(h\alpha_1,\dots,h\alpha_k)$$
$$h \ ^\exists_\forall \ x_i\alpha = \ ^\cup_\cap \ \{h\beta[x_i/x_j]: \beta \sim \alpha \ \text{and} \ j \in \omega\}$$

Define C_M^0 as follows:

(D) $\alpha \in C^0_{\underline{M}}(X)$ iff for every valuation h of \underline{F} in \underline{M} , if $hX \subseteq B$ then $h\alpha \in B$.

PROBLEM. Prove (or disprove) that $C_{\underline{M}}^0 = C_{\underline{M}}$.

References

- [1] C. C. Chang and J. H. Keisler, **Continuous model theory**, Princeton 1966, Princeton Univ. Press.
- [2] J. Łoś and R. Suszko, Remarks on sentential logics, Ind. Math. 20 (1958), pp. 177–183.
- [3] W. A. Pogorzelski and T. Prucnal, Structural completeness of the first-order predicate calculus, **Zeitschr. math. Log.** 21 (1975), pp. 315–320.
- [4] W. A. Pogorzelski and T. Prucnal, The substitution rule for predicate letters in the first-order predicate calculus, **Reports on Mathematical Logic** 5 (1975), pp. 77–90.

- [5] A. Tarski, Über einige fundamentale Begriffe der Metamathematik, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie 23 (1930), cl. iii, pp. 22–29.
- [6] J. Waszkiewicz and B. Węglorz, On products of structures for generalized logics, Studia Logica 25 (1969), pp. 7–15.

The Section of Logic Institute of Philosophy and Sociology Polish Academy of Sciences