Marek Tokarz

DEDUCTION THEOREMS FOR RM AND ITS EXTENSIONS

This is an abstract of a lecture read at the Seminar of the Logic Department, Wrocław University, February 1977.

Consider the following Sugihara algebra $\underline{S}=(Q,\to,\vee,\wedge,\sim)$, where Q is the set of all the rational numbers (including 0) and the operations \to,\vee,\wedge,\sim are defined as follows:

$$\begin{array}{rcl} \sim x & = & -x \\ x \vee y & = & max(x,y) \\ x \wedge y & = & min(x,y) \\ x \rightarrow y & = & \left\{ \begin{array}{ccc} -x \vee y & \text{if } x \leqslant y, \\ -x \wedge y & \text{otherwise.} \end{array} \right. \end{array}$$

Let $\underline{S}_a, \underline{S}_2, \underline{S}_3, \underline{S}_4, \ldots$ be subalgebras of \underline{S} generated by the sets $\{0\}$, $\{-1,1\}, \{-1,0,1\}, \{-2,-1,1,2\}, \ldots$ respectively. Put $D=\{x\in Q: x\geqslant 0\}$. Then the pair (\underline{S},D) is a Sugihara matrix with D as the set of designated elements. We shall also use the matrices $(\underline{S}_1,D_1), (\underline{S}_2,D_2), \ldots$ where $D_i=D\cap |\underline{S}_i|$. The symbol \underline{S}_i will denote both the i-element algebra as well as the suitable i-element matrix.

Let $\underline{L}=(L,\to,\vee,\wedge,\sim)$ be a propositional language with p_1,p_2,\ldots as propositional variables. Let (\underline{A},B) be any matrix under consideration. By $C_{(\underline{A},B)}$ we shall understand the matrix consequence in \underline{L} in the sense of Łoś and Suszko [2], i.e. for every $X\cup\{\alpha\}\subseteq\underline{L}$

$$\alpha \in C_{(A,B)}(X) \text{ iff } \forall h : \underline{L} \to^{hom} \underline{A}(hX \subseteq B \Rightarrow h\alpha \in B).$$

To make formulas short we shall write C_1 instead of $C_{\underline{S}_i}$. Let us define additional consequences in \underline{L} , namely C_{RM} and C_i^0 by putting:

68 Marek Tokarz

 $C_{RM}(X) =$ the least set of formulas including $X \cup RM$ and closed under modus ponens and adjunction.

 $C_i^0(X) =$ the least set of formulas including $X \cup C_i(\emptyset)$ and closed under modus ponens and adjunction.

The most important results on RM and Sugihara matrices are included in Dunn's [1], it is presupposed here that paper is familiar to the reader.

By Ackermann's rule we mean the one given by the scheme $\alpha, \sim \alpha \vee \beta/\beta$. Moreover, we use new connectives \supset and \succ defined in the following way:

$$\begin{array}{ll} \alpha\supset\beta&=_{\mathit{df}}&[\sim(\alpha\to\sim\beta)\vee(\alpha\to\beta)]\wedge(\sim\alpha\vee\beta),\\ \alpha\succ\beta&=_{\mathit{df}}&\beta\vee(\alpha\to\beta). \end{array}$$

The following theorems hold:

- 1. (Dunn [1])
 - a. $C_{RM} = C_{\underline{S}}$.
 - b. The only systems including RM and closed under substitution, modus ponens and adjunction are those of the form $C_i(\emptyset)$.
 - c. $C_1(\emptyset) \supseteq C_2(\emptyset) \supseteq C_3(\emptyset) \supseteq \dots$
 - d. $RM = \bigcap \{C_i(\emptyset) : i \in \omega\}.$
- 2. $\beta \in C_{2i}(X \cup \{\alpha\})$ iff $\alpha \vee \beta \in C_{2i}(X)$.
- 3. $\beta \in C_3(X \cup \{\alpha\})$ iff $\sim (\alpha \to \sim \beta) \lor (\alpha \to \beta) \in C_3(X)$.
- 4. $\beta \in C_{2i+1}(X \cup \{\alpha\})$ iff $\alpha \supset \beta \in C_{2i+1}(X)$.
- 5. $C_{2i+1} = C_{2i+1}^0$.
- 6. If $i \ge 2$, then $C_{2i} > C_{2i}^0$.
- 7. Ackermann's rule is not deducible in C_{2i}^0 , all $i \ge 2$.
- 8. $\beta \in C_{2i}^0(X \cup \{\alpha\})$ iff $\alpha > \beta \in C_{2i}^0(X)$.
- 9. $\beta \in C_{RM}(X \cup \{\alpha\})$ iff $\alpha \supset \beta \in C_{RM}(X)$.

References

[1] J. M. Dunn, Algebraic completeness results for R-mingle and its extensions, The Journal of Symbolic Logic 35 (1970), pp. 1–13.

 $[2]\,$ J. Łoś and R. Suszko, $Remarks\ on\ sentential\ logics,$ Indagationes Mathematicae 20 (1958), pp. 177–183.

The Section of Logic Institute of Philosophy and Sociology Polish Academy of Sciences