Bulletin of the Section of Logic Volume 6/2 (1977), pp. 74–79 reedition 2011 [original edition, pp. 74–81]

Grzegorz Malinowski

DEGREES OF MAXIMALITY OF ŁUKASIEWICZ-LIKE SENTENTIAL CALCULI

This is an abstract of the paper which will be published in Studia Logica.

Łukasiewicz-like n-valued sentential calculi

The algebra of formulas

$$\underline{L} = (L, \to, \vee, \wedge, \neg) \tag{1}$$

will be called the *language of Lukasiewicz-like sentential calculi* $(\to, \lor, \land, \neg$ denote the implication, disjunction, conjunction and negation connectives, respectively). Now consider the algebras

$$A_n = (A_n, \to, \vee, \wedge, \neg) \tag{2}$$

where n is an arbitrary natural number, $n \ge 2$, similar to \underline{L} and defined as follows:

- (i) $A_n = \{0, 1/n-1, \dots, n-2/n-1, 1\}$
- $\begin{array}{ll} \text{(ii)} & x \rightarrow y = \min(1, 1 x + y); \ x \lor y = \max(x, y) \\ & x \land y = \min(x, y); & \neg x = 1 x \\ & \text{for} \ x, y \in A_n \end{array}$

Given $n \ge 2$, let $I \subsetneq A_n$ be any subset of A_n such that $1 \in I$ and $0 \notin I$. Then the matrix

$$M_n^I = (\underline{A}_n, I) \tag{3}$$

will be called the *n*-valued Lukasiewicz-like matrix of the type I. The symbol C_n^I will be used to denote the consequence operation determined by the matrix M_n^I (in \underline{L}).

The pair

$$\mathbf{L}_{n}^{I} = (\underline{L}, C_{n}^{I}) \tag{4}$$

will be called the *n*-valued Lukasiewicz-like sentential calculus of the type I. Clearly $M_n^{\{1\}} = M_n$, where M_n is the well known *n*-valued Lukasiewicz matrix and $\mathcal{L}_n^{\{1\}} = \mathcal{L}_n$ appears to be the *n*-valued Lukasiewicz calculus.

Given $n \ge 2$, the class of all n-valued Łukasiewicz-like sentential calculi is a superclass of Rosser Turquette's [2] class of generalizations of the n-valued Łukasiewicz calculus. Recall that for every matrix M_n^I in [2] $I = \{x \in A_n : x \ge i/n-1\}$, where i/n-1 is some given element of A_n not equal to 0.

2. \mathbf{L}_{n}^{I} -algebras

For the whole present section let us assume that $\mathbf{L}_n^I=(\underline{L},C_n^I)$ is some fixed n-valued Łukasiewicz-like sentential calculus. For every $x,y\in A_n$ let us put

$$x \Rightarrow y = \begin{cases} 1 & \text{if } x \leqslant y \\ 0 & \text{otherwise.} \end{cases}$$
 (5)

Clearly, \Rightarrow is definable in M_n^I , cf. [2]. The same symbol \Rightarrow will be used to denote an appropriate sentential connective in \underline{L} .

Now, let us consider matrices $M=(\underline{A}_M,I_M)$, where $\underline{A}_M=(A_M,\to,\vee,\wedge,\neg)$ are algebras similar to \underline{L} and $I_M\subseteq A_M$. Given such M, by Cn_M we shall denote the consequence operation determined by M (in \underline{L}). The symbol $Matr(C_n^I)$ will be used to denote the class of all C_n^I -matrices, i.e. the class of matrices M, such that $C_n^I\leqslant Cn_M$.

For every $M \in Matr(C_n^I)$ we put

$$a \approx_M b \text{ if and only if } a \Rightarrow b, b \Rightarrow a \in I_M.$$
 (6)

and

$$V_M = \{ a \in A_M : \text{ there exists a formula } \alpha \in L \text{ such that}$$
 (7)

 $j_1(\alpha) \in C_n^I(\emptyset)$ and such that there exists a

homomorphism $h: \underline{L} \to \underline{A}_M$ for which $h\alpha = a\}$,

where j_1 is a sentential connective corresponding to Rosser and Turquette's j_1 ($j_1(x) = 1$ whenever x = 1 and $j_1(x) = 0$ otherwise), cf. [2].

Lemma 1.

- (i) The relation \approx_M is a congruence of M
- (ii) V_{M/\approx_M} is a one element set
- (iii) Put $1_M = V_{M/\approx_M}$ (see (ii)). Then if $|a| \to |b| = 1_M$ and $|b| \to |a| = 1_M$, then |a| = |b|.

In the sequel we shall consider the class

$$Matr^{R}(C_{n}^{I}) = \{ {}^{M}/_{\approx_{M}} : M \in Matr(C_{n}^{I}) \}.$$

$$(8)$$

3. The equational characterization of $Matr^{R}(C_{n}^{I})$

Given finite $n \geqslant 2$, let $HSP(\underline{A}_n)$ denote the smallest equational class of algebras containing the algebra \underline{A}_n . Now let us denote by $HSP(M_n^I)$ a corresponding class of matrices defined in the following manner: For every $\underline{A}_M \in HSP(\underline{A}_n)$ we take the matrix $M = (\underline{A}_M, I_M)$, where I_M is determined by one of the following conditions:

- (i₁) If $\underline{A}_M = \underline{A}_M$, then $I_M = I$
- (i₂) If \underline{A}_M is a product of the indexed set of algebras $\{\underline{A}_{M_i}: i \in T\}$, then $I_M = \sqcap \{I_{M_i}: i \in T\}$
- (i₃) If \underline{A}_M is a subalgebra of some algebra \underline{A}_{M_0} , then $I_M = \underline{A}_M \cap I_{M_0}$
- (i₄) If $\underline{A}_M = h(\underline{A}_{M_0})$, where h is a homomorphism, then $I_M = h(I_{M_0})$.

In the sequel, the element of $\underline{A}_M \in HSP(\underline{A}_n)$ being a natural counterpart of $1 \in A_n$ will be denoted by 1_M (cf. Lemma 1).

Let us now assume that $I = \{m_1, \ldots, m_k\}$, and consider Rosser and Turquette's functions j_{m_1}, \ldots, j_{m_k} , i.e. such functions of \underline{A}_n , that

$$j_{m_i}(x) = \begin{cases} 1 & \text{if } x = m_i \\ 0 & \text{otherwise,} \end{cases}$$
 (9)

cf. [2]. Because j_{m_i} 's are definable in \underline{A}_n , we can assume $j_{m_i}(\alpha)$, where $\alpha \in L$, to be formulas of \underline{L} .

In turn, let us put

$$\varphi_I(\alpha) = j_{m_1}(\alpha) \vee \ldots \vee j_{m_k}(\alpha); \tag{10}$$

obviously $\varphi_I(\alpha) \in L$. Moreover, for any $x \in A_n$ we have

$$\varphi_I(x) = \begin{cases} 1 & \text{if } x \in I \\ 0 & \text{otherwise.} \end{cases}$$
 (11)

From the representation theorem for $HSP(\underline{A}_n)$ and the properties of φ_I , we obtain

LEMMA 2. $M=(\underline{A}_n,I_M)\in HSP(M_n^I)$ if and only if 1^0 . $\underline{A}_M\in HSP(\underline{A}_n)$ and 2^0 . $I_M=\{a\in A_M; \varphi_I(a)=1_M\}$.

In turn, using the results of [3] and Lemma 2, one can prove

LEMMA 3. $HSP(M_n^I) \subseteq Matr^R(C_n^I)$.

Now, we are going to construct Lindenbaum matrix for \mathbf{L}_n^I . In the language \underline{L} we introduce the following relation:

$$\alpha \approx \beta$$
 if and only if $\alpha \Rightarrow \beta, \beta \Rightarrow \alpha \in C_n^I(\emptyset)$. (12)

One can easily verify that \approx is a congruence relation on L. The quotient matrix

$$\Lambda_n = (L/_{\approx}, Cn_n^I(\emptyset)/_{\approx}) \tag{13}$$

will be called the *Lindenbaum matrix for* \mathbf{L}_{n}^{I} .

LEMMA 4. $\underline{L}/_{\approx}$ is free in the class $\{\underline{A}_M : (\underline{A}_M, I_M) \in Matr(C_n^I) \text{ for some } I_M \subseteq A_M\}$, the set $\{||p|| : p \in V\}$ (where V is the set of all sentential

variables in \underline{L}) being the set of free generators in $\underline{L}/_{\approx}$. If $p_1 \neq p_2$, then $||p_1|| \neq ||p_2||$.

Using the last lemma and Lemma 2, one can prove the following Lemma 5. $Matr^{R}(C_{n}^{I}) \subseteq HSP(M_{n}^{I})$.

Combining the results of Lemma 3 and Lemma 5 we obtain the main theorem of the present section.

THEOREM 1. $Matr^R(C_n^I) = HSP(M_n^I)$.

4. Degrees of maximality of \mathbf{L}_n^I

Given a sentential calculus (\underline{L},C) , \underline{L} being a sentential language C a structural consequence operation on \underline{L} , the degree of maximality of (\underline{L},C) , $dm(\underline{L},C)$, is equal to the cardinal number of all structural consequence operations C' such that $C\leqslant C'$ (cf. e.g. [4]). Let us now consider any Lukasiewicz-like calculus \underline{L}_n^I . By the argument in [4] we obtain

$$dm(\mathbf{L}_n^I) = card\{Cn_M : M \subseteq Matr(C_n^I)\}. \tag{14}$$

Let $M \in Matr(C_n^I)$ be an arbitrary matrix and let \approx_M be the congruence relation defined by (6). From the fact that \approx_M is a congruence of M (Lemma 1 (i)), it follows that

$$Cn_M = Cn/_{\approx_M} \tag{15}$$

As it was defined in Section 2, the whole class of such $M/_{\approx_M}$ is $Matr^R(C_n^I)$. Moreover, according to the equational characterization given in Section 3 we have $Matr^R(C_n^I) = HSP(M_n^I)$. This implies that the sequence operation determined by the matrix belonging to the class $HSP(M_n^I)$. Consequently,

$$dm(\mathbf{L}_n^I) = card\{Cn_M : M \subseteq HSP(M_n^I)\}. \tag{16}$$

Using Lemma 9 in [4] and a correspondence between $HSP(M_n^I)$ and $HSP(M_n)$ (cf. Lemma 2), one can prove the following:

LEMMA 6. For each $M \in HSP(M_n^I)$ there are pairwise different submatrices N_1, \ldots, N_s of M_n^I such that $Cn_M = Cn_{N_1 \times \ldots N_s}$.

In turn, the following theorem is an easy corollary to (16) and Lemma 6.

Theorem 2. The degree of maximality of any (finite) Lukasiewicz-like sentential calculus L_n^I is finite.

REMARK. A more close inspection of the classes $HSP(M_n^I)$ and $HSP(M_n)$ leads to the conclusion that for any given $n \ge 2$, the degrees of maximality of the calculi L_n and L_n^I are equal. In particular for the calculi L_n , L_n^I for which (n-1) is prime, the degree of maximality equals 4 (cf. [1]).

References

- [1] G. Malinowski, Degress of maximality of some Lukasiewicz logics, this **Bulletin**, vol. 3 (1974), no. 3/4, pp. 27–33.
- [2] J. B. Rosser, A. R. Turquette, **Many-valued logics**, North Holland Publishing Company Amsterdam, 1952.
- [3] R. Wójcicki, Matrix approach in methodology of sentential calculi, **Studia Logica**, XXXII (1973), pp. 7–37.
- [4] R. Wójcicki, A theorem on the finiteness of the degree of maximality of the n-valued Łukasiewicz logics, Proceedings of the V-th International Symposium on Multiple-Valued Logics, Indiana University, Bloomington, May 1975, pp. 240–251.

Institute of Philosophy Łódź University

and

The Section of Logic Institute of Philosophy and Sociology Polish Academy of Sciences