S. K. Thomason

POSSIBLE WORLDS AND MANY TRUTH VALUES

This is an abstract of a paper submitted to Studia Logica. The results were presented at the 1977 Spring Meeting of the Association for Symbolic Logic.

In many-valued modal logic, validity is defined with reference to frames, as in ordinary modal logic, except that valuations assign to each formula, at each possible world, not just T or F but a truth value from a fixed many-valued truth-functional logic. It is required that $\Box \alpha$ be assigned a designated truth value at a possible world if and only if is assigned designated values at all alternative worlds. Previous work has established the existence of analogues in certain many-valued modal logics of certain familiar systems of ordinary modal logic.

Theorem 1. Any formula α of any many-valued modal logic \underline{M} determines the same class of frames as some formula α^* of ordinary modal logic \underline{K} .

The proof of Theorem 1 proceeds as follows. Without loss of generality, we assume that \underline{M} is "standard", i.e. that \underline{M} has "standard" connectives \neg, \lor, τ_a (for each truth value a) so that $\neg b, b \lor c, \tau_a b$ is designated iff b is not designated, at least one of b, c is designated, b = a, respectively. The given formula α can be written as $\beta(*\alpha_1 \dots \alpha_m/p)$, where $\alpha_1, \dots, \alpha_m$ are standard. Then α is replaced by $\gamma \Rightarrow \beta$ (i.e. by $\neg \gamma \lor \beta$), where γ has only standard connectives and \square and "says" that, necessarily, p has the same truth value as $*\alpha_1 \dots \alpha_m$ (for every assignment of truth values to $\alpha_1, \dots, \alpha_m$). Finitely many transformations of this sort yield a formula α' having only standard connectives and \square , which is valid on exactly the same frames as α . Now α' is constructed from formulas of the form $\tau_a\beta$

108 S. K. Thomason

using only the connectives \neg, \lor, \Box – if β is not a variable, then $\tau_a\beta$ can be replaced by a compound (using just \neg, \lor, \Box) of formulas $\tau_b\gamma$ with γ shorter than β . Finitely many replacements of this sort lead to a formula α'' having only standard connectives and \Box , in which τ_a 's apply only to variables; and α'' is valid on the same frames as α' (in fact, $\alpha' \Leftrightarrow \alpha''$ is valid on every frame). In α'' , replace every variable p not within the scope of any τ_a by the disjunction of all $\tau_b p$ with p designated; the formula p so obtained is constructed, via p, p, p, from formulas p, and again p so obtained in every frame. Finally, let p be obtained from p by replacing each p is valid on every frame and p so that, necessarily, for each p exactly one p holds, and let p be a formula which "says" that, necessarily, for each p exactly one p holds, and let p be a required.

Formal systems in \underline{K} are assumed to have just the usual rules (Substitution, Detachment, Necessitation), and at least the axioms of the system K. If \underline{M} is standard, then formal systems in \underline{M} are assumed to have, in addition to the usual rules, a rule called Elimination: from α''' infer α^* (where α''' and α^* are as in the preceding paragraph). Also, formal systems in \underline{M} are assumed to have axioms which include a certain finite set of " \underline{M} -axioms"; these \underline{M} -axioms are valid on all frames. $K^{\underline{M}}$ is the system in \underline{M} whose axioms are just the \underline{M} -axioms. In the remainder of this paper, \underline{M} is assumed to be standard.

LEMMA 2. (Completeness theorem for $K^{\underline{M}}$). $K^{\underline{M}} \vdash \alpha$ iff α is valid on all frames.

The proof from left to right is trivial; the proof from right to left proceeds as follows. If α is valid on all frames, then by Theorem 1 and the Completeness theorem for $K, K \vdash \alpha^*$. Since $K^{\underline{M}}$ extends $K, K^{\underline{M}} \vdash \alpha^*$. Now we proceed along the same line as the proof of Theorem 1, only backwards, showing successively that α''' , α'' , α' , and α are theses of $K^{\underline{M}}$. (The M-axioms are chosen just so as to make this possible).

The Elimination rule is not used in the proof of Lemma 2. That proof shows, in fact, that if S is any system in \underline{M} and $S \vdash \alpha^*$ without use of Elimination, then $S \vdash \alpha$ without use of Elimination.

THEOREM 3. If S is any system in \underline{M} , then $S \vdash \alpha$ iff $S \vdash \alpha^*$.

The proof from right to left is just as in Lemma 2. For the other direction, use Theorem 1, Lemma 2, and the Elimination rule to proceed

step-by-step from α to α^* .

COROLLARY 4. If S and S' are systems in \underline{M} , and $S \vdash \beta$ iff $S' \vdash \beta$ for all formulas β of \underline{K} , then S and S' are equivalent.

COROLLARY 5. Every system in \underline{M} is axiomatizable by formulas of \underline{K} (in addition to the \underline{M} -axioms).

Let S now be a system in \underline{K} , and consider the system $S^{\underline{M}}$ in \underline{M} whose axioms are just the axioms of S (together with the \underline{M} -axioms). It is not obvious that every formula β of \underline{K} which is provable in $S^{\underline{M}}$ is provable in S. (Presumably, one would prove, by induction on proofs, that if $S^{\underline{M}} \vdash \alpha$ then $S \vdash \alpha^*$; the inductive step is not obvious). If, however, S is complete with respect to some class F of frames, then $S \not\vdash \beta \Rightarrow (W \not\models \beta \text{ for some } W \in F) \Rightarrow (W \text{ is a frame for } S^{\underline{M}} \text{ on which } \beta \text{ is not valid}) \Rightarrow S^{\underline{M}} \not\vdash \beta$. Moreover, in this case the Elimination rule is redundant in $S^{\underline{M}}$: for if $S^{\underline{M}} \vdash \alpha$ then $S \vdash \alpha^*$, but S has no Elimination rule and every proof in S is a proof in $S^{\underline{M}}$; thus $S^{\underline{M}} \vdash \alpha^*$ without Elimination, and by the remarks following the proof of Lemma 2, $S^{\underline{M}} \vdash \alpha$ without Elimination.

Thus, whenever S is a complete system of ordinary two-valued modal logic, and \underline{M} is a standard many-valued modal logic, there is an analogue $S^{\underline{M}}$ of S in \underline{M} such that

- i. $S^{\underline{M}}$ is complete (for any class of frames for which S is complete),
- ii. for formulas β of \underline{K} , $S^{\underline{M}} \vdash \beta$ iff $S \vdash \beta$,
- iii. $S^{\underline{M}}$ is decidable iff S is decidable,
- iv. $S^{\underline{M}}$ is finitely axiomatizable iff S is finitely axiomatizable.

Moreover $S^{\underline{M}}$ can be taken to have only the usual rules of inference.

Department of Mathematics Simon Fraser University B.C., Canada