Piotr S. Krzystek

ON FREE RELATIVELY PSEUDOCOMPLEMENTED SEMILATTICE WITH THREE GENERATORS

The full text of this paper will appear in Report on Mathematical Logic.

Relatively pseudocomplemented semilattice (alias implicative semilattice) is a meet semilattice $\langle A, \leqslant \rangle$ s.t. for every $a,b \in A$ there exists a relative pseudocomplement of a w.r.t. b, i.e. the greatest element in the set $\{x \in A : inf(a,x) \leqslant b\}$. Implicative semilattices form a variety, when they are treated as algebras with two binary operations \wedge and \rightarrow . Let us denote this variety by \mathbb{I} . \mathcal{T}_n will denote the n-freely-generated free algebra in \mathbb{I} . It is known that all the algebras \mathcal{T}_n , $n=1,2,\ldots$ are finite and thus the question arises the number of elements of \mathcal{T}_n . Balbes in [1] proved that \mathcal{T}_2 possesses 18 elements and asked for the number of elements of \mathcal{T}_3 . In this paper we will answer Balbes' question.

LEMMA 1. (Balbes, Dwinger [2]) Let \mathcal{F} be a free algebra of type τ and let \mathcal{A} , \mathcal{L} be algebras of type τ . Then for every epimorphisms $f: \mathcal{F} \mapsto \mathcal{A}$, $g: \mathcal{F} \mapsto \mathcal{L}$ the following conditions are equivalent:

- (i) $Ker(f) \subseteq Ker(g)$,
- (ii) there exists an epimorphism $h: A \mapsto \mathcal{L}$ such that h * f = g.

If \mathcal{A} is a meet semilattice then $\mathbb{C}(\mathcal{A})$, $\mathbb{F}(\mathcal{A})$ denote the lattice of all the congruence relations of \mathcal{A} and the lattice of all the filters of \mathcal{A} respectively. If \mathcal{A} is a lattice then the symbols $\nabla(\mathcal{A})$ ($\Delta(\mathcal{A})$) denote the set of all the supirreducible (inf-irreducible) elements of \mathcal{A} . The set $X \subseteq \nabla(\mathcal{A})$ is hereditary iff $a \leq b \in X$ implies that $a \in X$. The family of all the hereditary subsets of $\nabla(\mathcal{A})$ ordered by the inclusion will be denoted by $H(\nabla(\mathcal{A}))$.

THEOREM 1. (Birkhoff [3]) Every finite distributive lattice A is isomorphic with $H(\nabla(A))$.

COROLLARY. If A is finite distributive lattice then $\Delta(F(A))$ is isomorphic with $\nabla(A)$.

THEOREM 2. If $A \in \mathbb{I}$ then the lattices $\mathbb{C}(A)$ and $\mathbb{F}(A)$ are isomorphic.

LEMMA 2. For every $A \in \mathbb{I}$ the following conditions are equivalent:

- (i) A is subdirectly indecomposable,
- (ii) there exists the greatest of all non-unit elements of A (we denote it by *).

LEMMA 3. (Wroński [9]) If A is a subdirectly indecomposable implicative semilattice then the following conditions hold:

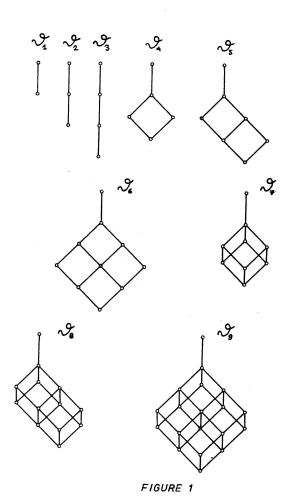
- (i) $\mathcal{A}' = \langle A \{*\}, \wedge, \rightarrow \langle \text{ is a subalgebra of } \mathcal{A},$
- (ii) if $G \subseteq A$ generates A then $G \{*\}$ generates A'.

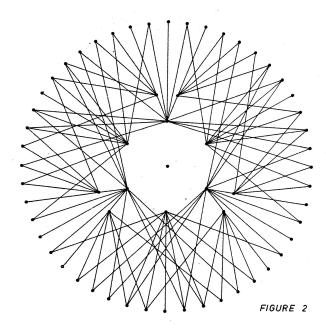
THEOREM 3. (Diego [5], Popiel (see Jankov [7], p. 24)) Algebras \mathcal{T}_n are finite, $n = 1, 2, \ldots$

Using Lemma 3 and the description of \mathcal{T}_2 given by Balbes [1] it is easy to verify that:

LEMMA 4. The algebras $\vartheta_1, \ldots, \vartheta_9$ (see fig. 1) are all (up to isomorphism) subdirectly indecomposable homomorphic images of \mathcal{F}_3 .

Given and implicative semilattice \mathcal{A} , the epimorphisms from \mathcal{T}_3 onto \mathcal{A} are in one-one correspondence with three-termed sequences $\langle a_1, a_2, a_3 \rangle$ of elements of \mathcal{A} s.t. the set $\{a_1, a_2, a_3\}$ generates \mathcal{A} . Such sequences will be referred to as \mathcal{A} -sequences. Given two ϑ_i -sequences s_0 and s_1 we say that they are equivalent iff $Ker(\varphi_0) = Ker(\varphi_1)$ where φ_0 and φ_1 are corresponding epimorphisms of \mathcal{T}_3 onto ϑ_i . For $i=1,\ldots,9$ let S_i be the set of all equivalence classes of ϑ_i -sequences and let $S=S_1\cup\ldots\cup S_9$. We define a partial ordering of the set s putting for every $s_0, s_1 \in S$, $s_0 \leqslant s_1$ iff $Ker(\varphi_0) \subseteq Ker(\varphi_1)$ where φ_0, φ_1 are corresponding epimorphisms from \mathcal{T}_3 . We can use now Lemma 1 and by inspection of possible epimorphisms from ϑ_i onto $\vartheta_j, i \neq j$, we obtain the diagram of $\mathcal{J} = \langle S, \leqslant \rangle$ shown in fig. 2 (the order is decreasing as we move from the center of the diagram, the only separated point is placed in the center).





Theorem 4. The free implicative semilattice \mathcal{T}_3 is order-isomorphic to the partially ordered set $\langle H(\mathcal{J}), \subseteq \rangle$.

COROLLARY. The number of elements of \mathcal{T}_3 is equal to the number of antichains of \mathcal{J} , i.e. 623 662 965 552 330.

References

- [1] R. Balbes, On free pseudo-complemented and relatively pseudo-complemented semi-lattices, Fund. Math. 78 (1973), pp. 119–131.
- [2] R. Balbes, P. Dwinger, **Distributive Lattices**, Univ. of Missouri Press, Columbia 1974.
- [3] G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ., vol. 25, third edition, Amer. Math. Soc. NY 1967.

120 Piotr S. Krzystek

 $[4]\;$ P. M. Cohn, **Universal Algebra**, Harper and Row, New York NY 1965.

- [5] A. Diego, Sur les algébres de Hilbert, Collection de logique mathématique, Ser. A, fasc. 21, Paris 1966.
 - [6] G. Grätzer, Universal Algebra, D. van Nostrand Comp. 1968.
- [7] V. A. Jankov, Conjunctively indecomposable formulas in propositional calculi, Izv. Akad. Nauk. SSSR ser. Mat. 33 (1969), pp. 18–38 = Math. USSR Izv. 3 (1969), pp. 17–36.
- [8] J. W. Landolt, T. P. Whaley, Relatively free implicative semilattices, Algebra Universalis 4 (1974), pp. 166–184.
- [9] A. Wroński, On cardinalities of matrices strongly adequate for the intuitionistic propositional logic, **Reports on Math. Logic** 3 (1974), pp. 67–72.

Department of Logic Jagiellonian University