Frederic A. Johnson

A NATURAL DEDUCTION RELEVANCE LOGIC

The relevance logic (NDR) presented in this paper is the result of an attempt to find a natural deduction development, in the style of I. M. Copi (Introduction to Logic, 4th ed., MacMillan, 1972), for the relevance logic I presented in "A Three-Valued Interpretation for a Relevance Logic" (The Relevance Logic Newsletter, Vol. 1, no. 3, 1976).

The propositional variables of NDR are, p_1, p_2, \ldots NRD's well-formed formulas are constructed in the standard way by using propositional variables, parentheses and the connectives, $-, \cdot$ and \vee , in order of increasing binding strength. ' $P \supset Q$ ' is by definition ' $-(P \cdot -Q)$ '. Capital letters with or without subscripts are metalinguistic variables which range over the well-formed formulas. We will use ' \vdash_r ' to present NDR's rules of inference:

1.	$P \vdash_r P \lor Q$, where every p_i	(Restricted Addition, RA)
	in Q occurs in P .	
2.	$P \vdash_r P \cdot (Q \vee -Q)$, where every	(Restricted Tautology
	p_i in Q occurs in P .	Conjunction, RTC)
3.	$P,Q \vdash_r P \cdot Q$	(Conjunction, Conj.)
4.	$P \cdot Q \vdash_r P$	(Simplification, Simp.)
5.	$P \vee Q \cdot R \vdash_r P \vee Q$	(Disjunctive Simplifica-
		tion, DS)
6.	$P \lor Q \cdot -Q \vdash_r P$	(Contradiction
		Elimination, CE)

7. If $S \equiv_l T$ in virtue of exactly one of the following statements then $F(S) \vdash F(T)$.

```
\begin{array}{ll} \text{ii)} & P \cdot (Q \vee R) \equiv_l P \cdot Q \vee P \cdot R \\ \text{iii)} & P \cdot (Q \vee R) \equiv_l P \cdot Q \vee P \cdot R \\ & P \vee Q \cdot R \equiv_l (P \vee Q) \cdot (P \vee R) \end{array} \qquad \text{(DeMorgan's, DeM)}
```

$$\begin{array}{lll} \text{iii)} & P \cdot (Q \cdot R) \equiv_l (P \cdot Q) \cdot R & \text{(Association, Assoc.)} \\ & P \vee (Q \vee R) \equiv_l (P \vee Q) \vee R & \\ \text{iv)} & P \cdot Q \equiv_l Q \cdot P & \text{(Computation, Com.)} \\ & P \vee Q \equiv_l Q \vee P & \\ \text{v)} & --P \equiv_l P & \text{(Double Negation, DN)} \\ \text{vi)} & P \cdot P \equiv_l P & \text{(Tautology, Taut.)} \\ & P \vee P \equiv_l P & \end{array}$$

NDR's entailment relation, symbolized by ' \vdash ', is defined as follows: $P_1, \ldots, P_n \vdash C$ if and only if there is a sequence of well-formed formulas S_1, \ldots, S_m such that $S_m = C$ and each S_i $(1 \le i \le m)$ is either a P_i $(1 \le i \le n)$ or follows from preceding S_i by one of the rules of inference.

THEOREM 1. If $P_1, \ldots, P_n \vdash C$ then P_1, \ldots, P_n classically entails C and every p_i in C occurs in P_1, \ldots, P_n .

PROOF. Every valuation which assigns t to the premises of the rules of inference assigns t to the conclusion. Furthermore, none of the rules of inference introduce into the conclusion propositional variables which do not occur in the premises.

THEOREM 2. (Indirect Proof.) If $P \cdot -Q \vdash R \cdot -R$ and every p_i in Q occurs in P then $P \vdash Q$.

PROOF. Let S_1, \ldots, S_n be a sequence of well-formed formulae such that $S_1 = P \cdot -Q$, $S_n = R \cdot -R$ and each S_i $(1 \le i \le n)$ is either $P \cdot -Q$ or follows from S_j or from S_j and S_k $(1 \le j, k < n)$. Then construct this sequence of statements:

166 Frederic A. Johnson

$$a_n + 1$$
. $P \cdot Q$ a_n , CE $a_n + 2$. $Q \cdot P$ $a_n + 3$. Q $a_n + 2$, Simp.

The steps from, but excluding, $P \cdot Q \vee S_{i-1}$ to, and including, $P \cdot Q \vee S_i$ for $1 < j \le n$ are to be filled in as follows:

- i) If $S_j = P \cdot -Q$ then supply the sequence $a_j - 1$. $(P \cdot Q \lor P \cdot -Q) \cdot (Q \lor -Q)$ a_1 , RTC a_j . $P \cdot Q \lor P \cdot -Q$ $a_j - 1$, S $a_j - 1$, Simp. Make $a_i - 2 = a_{i-1}$.
- ii) If $S_i \vdash S_j$ (i < j) by RA, where $S_j = S_i \lor T$, then supply the sequence $a_j - 1$. $(P \cdot Q \vee S_i) \vee T$ a_i , RA a_i . $P \cdot Q \vee (S_i \vee T)$ $a_i - 1$, Assoc. Make $a_j - 2 = a_{j-1}$.
- iii) If $S_i \vdash S_j$ (i < j) by RTC, where $S_j = S_i \cdot (T \lor -T)$, then supply the

$$a_{j} - 7. \quad (P \cdot Q \vee S_{i}) \cdot (T \vee -T) \qquad a_{i}, \text{ RTC}$$

$$a_{j} - 6. \quad (T \vee -T) \cdot (P \cdot Q \vee S_{i}) \qquad a_{j} - 7, \text{ Com.}$$

$$a_{j} - 5. \quad (T \vee -T) \cdot (P \cdot Q) \vee \qquad \qquad a_{j} - 6, \text{ Dist.}$$

$$a_{j} - 4. \quad (T \vee -T) \cdot S_{i} \vee (T \vee -T) \cdot \qquad \qquad a_{j} - 6, \text{ Dist.}$$

$$(P \cdot Q) \qquad \qquad \qquad a_{j} - 5, \text{ Com.}$$

$$a_{j} - 3. \quad (T \vee -T) \cdot S_{i} \vee (P \cdot Q) \cdot \qquad \qquad \qquad a_{j} - 4, \text{ Com.}$$

$$a_{j} - 2, \quad (T \vee -T) \cdot S_{i} \vee (P \cdot Q) \cdot \qquad \qquad \qquad \qquad a_{j} - 3, \text{ DS}$$

 $\begin{array}{ccc} (T\vee -T) & a_j = 4, \text{ Colif.} \\ a_j = 2. & (T\vee -T)\cdot S_i\vee (P\cdot Q) & a_j = 3, \text{DS} \\ a_j = 1. & (P\cdot Q)\vee (T\vee -T)\cdot S_i & a_j = 2, \text{ Com.} \\ a_j. & (P\cdot Q)\vee S_i\cdot (T\vee -T) & a_j = 1, \text{ Com.} \\ \text{Make } a_j = 8 = a_{j-1}. \end{array}$

iv) If $S_h, S_i \vdash S_j$ (h, i < j) by Conj., where $S_j = S_h \cdot S_i$, then supply the sequence

$$\begin{array}{ccc} a_j-1. & (P\cdot Q\vee S_n)\cdot (P\cdot Q\vee S_i) & a_h,a_i \text{ Conj.} \\ a_j. & P\cdot Q\vee (S_h\cdot S_i) & a_j-1, \text{ Dist.} \\ \text{Make } a_j-2=a_{j-1}. \end{array}$$

Procedures for filling in the lines between a_j and a_{j-1} when $S_i \vdash S_j$ in virtue of Rules 4-7 are also easily constructed.

THEOREM 3. (Transitivity of Entailment.) If $P \vdash Q$ and $Q \vdash R$ then $P \vdash R$.

PROOF. Let $S_1 (= P), S_2, \ldots, S_m (= Q)$ be a sequence of well-formed formulas which shows that $P \vdash Q$ and let $S_m (= Q), S_{m+1}, \ldots, S_n (= R)$ be a sequence of well-formed formulas which shows that $P \vdash R$. Then S_1, \ldots, S_n shows that $P \vdash R$.

THEOREM 4. If P classically entails Q and every p_i in Q occurs in P then $P \vdash Q$.

PROOF. Assume the antecedent. Then $P \cdot -Q$ is a contradiction. By DeM, Dist., Assoc., Com., DN and Taut. $P \cdot -Q \vdash R_1 \cdot -R_1 \cdot S_1 \vee \ldots \vee R_n \cdot -R_n \cdot S_n \cdot (R_1 \cdot -R_1 \cdot S_1 \vee \ldots \vee R_n \cdot -R_n \cdot S_n$ is one of the formulas which will be produced when following some of the various mechanical procedures for generating the disjunctive normal form of $P \cdot -Q$). By CE and Simp. $R_1 \cdot -R_1 \cdot S_1 \vee \ldots \vee R_n \cdot -R_n \cdot S_n \vdash R_1 \cdot -R_1$. By Theorem 3 (Th. 3), $P \cdot -Q \vdash R_1 \cdot -R_1$. By Th. $2P \vdash Q$.

THEOREM 5. (Adjunction). If $P \vdash Q$ and $P \vdash R$ then $P \vdash Q \cdot R$.

PROOF. Let $S_1, \ldots, S_m \ (=Q), \ldots, S_n \ (=R)$, where $m \le n$, be a sequence that shows that $P \vdash Q$ and $P \vdash R$. Let $S_{n+1} = Q \cdot R$. Then S_1, \ldots, S_{n+1} shows that $P \vdash Q \cdot R$, using Conj.

THEOREM 6. (Deduction Theorem). If $P \cdot Q$ and every p_i in Q occurs in P then $P \vdash Q \supset C$.

PROOF. Assume the antecedent. By Theorem 1 $P \cdot Q$ classically entails C. Then P classically entails $Q \supset C$. Since every p_i in Q occurs in P and every p_i in C occurs in $P \cdot Q$ it follows that every p_i in $Q \supset C$ occurs in P. By Theorem $A \cap P \vdash Q \supset C$.

THEOREM 7. (Antilogism). If $P \cdot Q \vdash R$ and every p_i in Q occurs in P then $P \cdot -R \vdash -Q$.

PROOF. By Simp. $P \cdot -R \vdash P$. Assume the antecedent. By Th. 6 and the definition of ' \supset ' $P \vdash -(Q \cdot -R)$. By Th. 3 $P \cdot -R \vdash -(Q \cdot -R)$. By Com.

 $^{^1{\}rm This}$ proof, suggested by Richard Routley, is more straightforward than my original proof. I am grateful for Professor Routley's comments, which led to several improvements.

168 Frederic A. Johnson

and Simp. $P \cdot -R \vdash -R$. By Th. 5 $P \cdot -R \vdash -R \cdot -(Q \cdot -R)$. By Dem, Dist., Com. and Simp. $-R \cdot -(Q \cdot -R) \vdash -Q$. By Th. 3 $P \cdot -R \vdash -Q$.

The difference between NDR and the relevance logic presented in "A Three-Valued Interpretation of a Relevance Logic" is that the latter does not recognize the validity of any arguments with contradictory premises, whereas NDR does. For example, $p_1 \cdot -p_1 \vdash p_1$ in NDR. But both of these logics endorse what W. T. Parry (The Logic of C. I. Lewis', **The Philosophy of C. I. Lewis**, ed. P. A. Schilpp, 1968, pp. 115–54) called the Proscriptive Principle, which keeps those arguments which contain a p_i that occurs in the conclusion but not in a premise from being valid. Charles Kielkopf ('Adjunction and Paradoxical Derivations', **Analysis**, Vol. 35, no. 4, 1975, pp. 127–9) showed that the system which Parry based on the Proscriptive Principle inadvertently permits the derivation of any statement from a contradiction.

Perhaps the most worrisome feature of NDR is that it denies that in general if A entails B then -B entails -A. For example, though $p_1 \cdot p_2$ entails p_1 it is false that $-p_1$ entails $-(p_1 \cdot p_2)$. But the reservations which beginning students of logic have about the validity of Unrestricted Addition, which would guarantee that $-p_1$ entails $-p_1 \vee -p_2$ suggest that this apparent defect may be a virtue.²

Department of Philosophy Colorado State University Fort Collins, Colorado 80523

 $^{^2\}mathrm{I}$ am grateful to Professor Charles Kielkopf and Professor Patrick McKee for their helpful comments.