Marek Tokarz

A REMARK ON MAXIMAL MATRIX CONSEQUENCES

This is an abstract of a lecture read at the Seminar of the Section of Logic, Polish Academy of Sciences, Wrocław, April 1977.

Let $\underline{A} = (A, f_1, \ldots, f_n)$ be an algebra similar to some propositional language $\underline{S} = (S, F_1, \ldots, F_n)$ free generated by some set $V = \{p_1, p_2, \ldots\}$ of propositional variables. When $a \in A$, [a] denotes the subalgebra of \underline{A} generated by a. A matrix is any pair (\underline{A}, B) , $B \subseteq A$ (B being the set of designated elements). If \underline{M} is a matrix, then $C_{\underline{M}}$ denotes the matrix consequence (cf. [1]) given by \underline{M} in \underline{S} . Let C be any consequence operation in \underline{S} . C is said to be structural provided that $eC(X) \subseteq C(eX)$ for any $X \subseteq S$ and for any endomorphism e of \underline{S} . C is said to be maximal (almostmaximal) if for any structural C_1 , $C < C_1$ implies $C_1(\emptyset) = S$ ($C_1(\alpha) = S$ for every $\alpha \in S$). Clearly

- (I) C is almost-maximal iff for every structural C_1 such that $C < C_1$, there is some $p \in V$ such that $C_1(p) = S$.
- (II) If C is maximal, then C is almost-maximal.

THEOREM. Let for some $a \in A$, $[a] = \underline{A}$ and let $\underline{M} = (\underline{A}, \{a\})$. Then $C_{\underline{M}}$ is almost-maximal.

PROOF. Suppose that $C_{\underline{M}} < C$ for some structural C. Then there are $\alpha \in S, X \subseteq S$ such that

(A) $\alpha \in C(X)$ and $\alpha \notin C_{\underline{M}}(X)$.

Hence there is some valuation (homomorphism) h of \underline{S} in \underline{A} such that (B) $hX \subseteq \{a\}$ and $h\alpha \neq a$.

Let $\beta_1(p)$, $\beta_2(p)$, $\beta_3(p)$,... be any formulas built up of only one variable $p \in V$ such that $\beta_1(a) = hp_1$, $\beta_2(a) = hp_2$, $\beta_3(a) = hp_3$,... Since $[a] = \underline{A}$ the β 's do exist. Define a substitution (endomorphism) e_0 by putting

(C) $e_0 p_i = \beta_i(p)$, all $i \in \omega$.

Clearly, if h_0 is any valuation such that $h_0p = a$, then $h_0e_0X = hX \subseteq \{a\}$ by (B). Then

(D) $e_0X \subseteq C_M(p) \subseteq C(p)$.

By structurality of C, (A) implies $e_0\alpha \in C(e_0X)$; so by (D):

(E) $e_0 \alpha \in C(p)$.

If p takes the designated value, then $e_0\alpha$ does not (by (B), (C)). Hence $\{e_0\alpha, p\}$ is not satisfiable in \underline{M} . Thus

(F) $C_{\underline{M}}(e_0\alpha, p) = S$.

From (E), $\overline{(F)}$ we obtain $S = C_{\underline{M}}(e_0\alpha, p) \subseteq C(e_0\alpha, p) = C(p)$, which, on the grounds of (I), concludes the proof.

COROLLARY 1 (Wójcicki-Wroński). Let \underline{A} have no proper subalgebras, $a \in A$, $\underline{M} = (\underline{A}, \{a\})$. Then $C_{\underline{M}}$ is almost-maximal.

COROLLARY 2. Let \underline{A} , \underline{M} be as in Corollary 1. If $C_{\underline{M}}(\emptyset) \neq \emptyset$, then $C_{\underline{M}}$ is maximal.

COROLLARY 3. Let $B \subseteq A$, $\underline{M} = (\underline{A}, B)$. If every constant function is definable in \underline{A} , then C_M is maximal.

References

[1] J. Łoś and R. Suszko, *Remarks on sentential logics*, **Indagationes** Mathematicae 20 (1958), pp. 177–183.

The Section of Logic Institute of Philosophy and Sociology Polish Academy of Sciences