Wolfgang Rautenberg

THE LATTICE OF RAMIFIED MODAL AND TENSE LOGIC (PRELIMINARY REPORT)

Let K^n denote the smallest n-ramified normal modal logic, $n \in \omega$. K^n is like K, except that it has a system Ω of n unary modal functors. The case n=2 corresponds to a somewhat extended situation as occurs in the so-called tense logic. The (normed) matrices or models of K^n are expanded Boolean algebras with a set Ω of n unary operations, each $\blacksquare \in \Omega$ satisfying

$$(\circ) \blacksquare a \cap \blacksquare b \leqslant \blacksquare (a \cap b) \qquad (1) \blacksquare 1 = 1$$

This, each $\blacksquare \in \Omega$ is a generalized kernel operator. By Q^nBA we denote the class of these expanded Boolean algebras. Let N^n denote the complete lattice of normal extensions of K^n . Clearly, if $L \in N^n$, then L = LA, some $A \in Q^nBA$. If A is finite, L is said to be tabular.

Theorem 1. Q^nBA is congruence-distributive (i.e. each member $A \in Q^nBA$ is). Therefore N^n is distributive.

Moreover, we have the following

THEOREM 1'. N^n is a HEYTING-algebra.

This follows from the Lemma below whose proof is based on a careful analysis of the formal definition on the $L \in N^n$. By $L(P)_{P \in X}$ we denote the logic in N^n determined by the axiom system X. $\mathfrak{M}P$ is the conjunction of all ΠP , Π runs over all prefixes $\blacksquare_1 \dots \blacksquare_l$ of length l, $0 \leq l \leq m$.

LEMMA. $L(P)_{P \in X} \cap L(Q)_{Q \in Y} = L(\mathfrak{Q}P \vee \mathfrak{Q}Q)_{P \in X:Q} Y: m \in \omega$.

Theorem 2. The tabular $L \in \mathbb{N}^n$ form a sublattice of \mathbb{N}^n .

Theorem 3. Each tabular $L \in \mathbb{N}^n$ has finitely many extensions only.

Conversely, if $L \in N(:=N^1)$ has finitely many extensions only, then L is tabular.

Theorem 3 is not true $n \geqslant 2$, as follows from an incompleteness result of S. K. Thomason.

 $L \in \mathbb{N}^n$ is said to be pretabular, if L is not tabular, but each proper extension of L is.

Theorem 4. Each non-tabular $L \in \mathbb{N}^n$ is contained in some pretabular $L \in \mathbb{N}^n$.

The Theorems 3 and 4 are essentially based on the following criterion. Put $\chi_k^n := \bigvee_{0 \le i \le j \le n} \cancel{\mathbb{E}}(p_i \leftrightarrow p_j) \bigwedge_{\cdots} \cancel{\mathbb{E}}p_0 \to \cancel{\mathbb{E}}+\cancel{\mathbb{E}}p_0$.

Criterion. $L \in \mathbb{N}^n$ is tabular $\underline{iff} \chi_k^n \in L$ for some $k \in \omega$.

Theorem 5. The pretabular $L \in N$ have the form $L = \bigcap_{i \in \omega} L_i$, each L_i prime tabular and $L_0 \supset L_1 \supset L_2 \supset \dots$

 $L \in \mathbb{N}^n$ is said to be *locally finite*, if each finitely generated $A \in ModL$ is finite. K_m^n denotes the set of extensions of $K^n(mp \to m+1p)$.

THEOREM 6. If $L \in K_m^n$ is locally finite, then ModL contains an infinite subdirect irreducible $A \in Q^nBA$ iff ModL contains an infinite number of finite subdirect irreducible members.

Theorem 6 is based on the following

CRITERION. $A \in Q^n BA$ is subdirect irreducible $\underline{iff} \exists c \in A : \forall a \in A : \exists n \in \omega : @a \leq c$.

Let P_n be the formula expressing "In Kripke-frames there are path's of length at most n".

THEOREM 7. If $P_m \in L \in \mathbb{N}^n$ then L is locally finite.

Corollary. $L \in \mathbb{N}_m^n$ is tabular iff L has finitely many extensions only.

From the Lemma above it follows also that the finitely axiomatizable $L \in N_m^n$ form a sublattice of N_m^n ; it is doubtful whether this is true for $N = N^1$.

Freie Universität West-Berlin