Bulletin of the Section of Logic Volume 7/2 (1978), pp. 75–75 reedition 2011 [original edition, pp. 75–75]

Zdzisław Dywan

DUAL COUNTERPARTS OF STRONGLY FINITE CONSEQUENCES

THEOREM. There is a strongly finite consequence C and an elementary matrix \mathcal{M} such that $C = Cn_{\mathcal{M}}$ and dC is not strongly finite. (In [1] Wójcicki stated a hypothesis which is the negation of the theorem. The terminology used here follows [1]).

PROOF. Let $\mathcal{M}=((\{0,1\},\rightarrow),\{0\})$ be an elementary matrix where $0\to 0=0\to 1=1\to 1=1,\ 1\to 0=0$. Let C be the consequence determined by this matrix. It can easily be proved that if $\alpha\to\beta\in C(\gamma)$ then $\beta\in C(\gamma)$ and if $p_1\in C(p_2)$ then $p_1=p_2$. Let p_1,p_2,p_3 be different variables. We prove that $C(p_1)\cap C(p_2)\subseteq C(p_3)$. Suppose that $\alpha\in C(p_1)\cap C(p_2)$. α is a formula of the form $\alpha_1\to(\alpha_2\to\ldots\to(\alpha_i\to p_4)\ldots)$. Then $p_4\in C(p_1)\cap C(p_2)$. Hence $p_4=p_1$ and $p_4=p_2$, and we obtain a contradiction. Then $C(p_1)\cap C(p_2)=\emptyset$. So $C(p_1)\cap C(p_2)\subseteq C(p_3)$. Let e be a substitution such that $ep_1=ep_2=p_1$, $ep_3=p_3$. It is easy to see that $C(ep_1)\cap C(ep_2)\nsubseteq C(ep_3)$. By (Proposition 2, Theorem 8 in) [1] dC is not strongly finite. Q.E.D.

References

[1] R. Wójcicki, Strongly finite sentential calculi, [in:] Selected papers on Łukasiewicz sentential calculi, Wrocław, 1977.

The Catholic University of Lublin