Jerzy J. Błaszczuk

WEAKEST NORMAL CALCULI WITH RESPECT TO M^n -COUNTERPARTS

This is an abstract of the paper submitted to Studia Logica.

By M^n -counterpart of any modal system we mean the set of all formulas which, while preceded n-times by sign M, become theses of the system. In [1], for some normal modal systems the greatest normal modal systems with equal M^n -counterparts were constructed and axiomatized. In this paper, for some normal modal systems we axiomatized the weakest normal modal systems with equal M^n -counterparts.

We use the well-known logical and set-theoretical notation. The symbol ω denotes the set of natural numbers; the elements of this set will be denoted by k, m, n. The logical connectives will be represented by \rightarrow , L, M, denoting material implication, necessity, and possibility, respectively. Propositional variables will be represented by p, q, \ldots and formulas by capitals A, B, \ldots By FOR we denote the set of all formulas. We put

$$L^0A = A$$
, $L^{n+1}A = LL^nA$, $M^0A = A$, $M^{n+1}A = MM^nA$.

Let PC denote the set of all classical tautologies. Cn_R is a consequence operator defined by PC and a set of rules of deduction, whereas Cn_{R_0} is defined by means of PC, substitution, detachment and Gödel's rule: if A, then LA. Logical systems are treated as sets of formulas. Let

$$\begin{split} K &= Cn_{R_0}(L(p \rightarrow q) \rightarrow (Lp \rightarrow Lq)), \\ D &= Cn_{R_0}(K, M(p \rightarrow p)). \end{split}$$

As is well known, the system K (see [2]) is the smallest normal modal system and D is a deontic system of Lemmon (see [4]). By $\mathbb{K}(\mathbb{D})$ we denote

the class of all normal modal systems including K (including D). Let $X \subset FOR$ and $n \in \omega$. We put

```
\begin{split} M^n(X) &= \{\alpha \in FOR : M^n\alpha \in X\}, \\ (X)M^n &= \{M^n\alpha \in X : \alpha \in FOR\}. \end{split}
```

THEOREM 1. For every $X \in \mathbb{K}$ and $n \in \omega$ the following conditions are equivalent:

- (1) $X \subset M^n(X)$,
- (2) $D \subset X$,
- (3) $M^n(X) \neq \emptyset$.

The proof is analogous to that of Theorem 4 in [5].

COROLLARY 2. D is the weakest normal modal system for which $M^n(D) \neq$ $\emptyset, n \in \omega$.

Notice that considering M^n -counterparts of normal modal systems it is enough to confine the considerations to the systems belonging to the class

THEOREM 3. Let $X \in \mathbb{D}$. Then $Cn_{R_0}((X)M^n)$ is the smallest normal modal system such that

$$M^n(Cn_{R_0}((X)M^n)) = M^n(X).$$

As I was informed the theorem has been proved by J. Perzanowski but up to now it has not been published.

Notice that Theorem 3 yields that for each normal modal system X belonging to \mathbb{D} there exists the smallest modal system with M^n -counterpart the same as that of X. The system will be denoted by X_{M^n} . Set $(X)M^n$ is always infinite, thus the axiomatics of X_{M^n} given in Theorem 3 is an infinite one. J. Kotas and N. C. A. da Costa in [3] formulated the problem of finite axiomatization of system X_{M^n} with the assumption of finite axiomatizability of X.

We shall use the following deduction rules:

- $\begin{array}{l} (r_1^{nk}): \text{If } M^nL^kA \text{, then } M^nL^{k+1}A, \\ (r_2^{nk}): \text{If } M^nL^kA \text{, } M^nL^k(A \to B) \text{, then } M^nL^kB, \\ (r_3^{nk}): \text{If } M^nL^kM^nA \text{, then } M^nA. \end{array}$

Definition 4 ([1]). Let $k, n \in \omega$,

104 Jerzy J. Błaszczuk

(1) $\mathcal{D}_n^k = \{X \in \mathbb{D} : X \text{ is closed under the rules } (r_i^{nk}), i = 1, 2, 3\},$ (2) $\mathcal{D}_n = \bigcup_{k \geqslant 1} \mathcal{D}_n^k.$

Observe that if $X \in \mathcal{D}_n$, then there exists a natural number k such that $X \in \mathcal{D}_n^k$. Let k(X) denote one of those natural numbers for which $X \in \mathcal{D}_n^{k(X)}$.

Let us confine our considerations to the family of normal modal systems X such that $X \in \mathcal{D}_n$.

Let X be any normal modal system. It is known that for X there exists a set A_X of axioms (finite or infinite) and a finite set R_X of rules of deduction such that $X = Cn_{R_X}(A_X)$. Notice that without any loss of generality of considerations we may assume that R_X contains merely the detachment rule for material implication, substitution and Gödel's rule. Thus we can assume that $X = Cn_{R_0}(A_X)$.

```
Theorem 5. Let X \in \mathcal{D}_n. Then X_M n = C n_R (M^n L^{k(X)} A_X), where M^n L^{k(X)} A_X = \{ M^n L^{k(X)} \alpha : \alpha \in A_X \} and R = R_0 \cup \{ r_1^{nk(X)}, r_2^{nk(X)}, r_3^{nk(X)} \}.
```

From the theorem we immediately have

COROLLARY 6. Let $X \in \mathcal{D}_n$. If $X = Cn_{R_0}(A_X)$ is finitely axiomatizable, then X_{M^n} is also finitely axiomatizable.

Theorem 5 and Corollary 6 constitute a partial solution of the problem formulated in [3].

References

- [1] J. J. Błaszczuk, Remarks on M^n -counterparts of some normal modal calculi, **Bulletin of the Section of Logic**, Vol. 6, No. 2 (1977), pp. 82–86.
- [2] M. J. Cresswell, G. E. Hughes, **An Introduction to Modal Logic**, Methuen and Co. Ltd., London 1968.
- [3] J. Kotas, N. A. C. da Costa, On some modal logical systems defined in connection with Jaśkowski's problem, Proceedings of the Third Latin

- American Symposium on Mathematical Logic, Amsterdam 1977.
- [4] E. J. Lemmon, Algebraic semantics for modal logic I, The Journal of Symbolic Logic 31 (1966), pp. 46–65.
- [5] J. Perzanowski, On M-fragments and L-fragments of normal modal propositional logics, Reports on Mathematical Logic 5 (1975), pp. 63–72.

Institute of Mathematics Nicholas Copernicus University Toruń