Bulletin of the Section of Logic Volume 7/3 (1978), pp. 115–119 reedition 2011 [original edition, pp. 115–120]

Hajnal Andréka István Németi

COMPLETENESS OF FLOYD LOGIC

This is an abstract of our paper "A characterisation of Floyd-provable programs" submitted to Theoretical Computer Science.

 ω denotes the set of natural numbers.

 $Y = ^d \{y_i : i \in \omega\}$ is the set of variable symbols. L denotes the set of classical first order formulas of type t (cf. [2]) possibly with free variables (elements of Y), where t is the similarity type of arithmetic, i.e. it consists of "+, \cdot, 0, 1" with arities "2, 2, 0, 0".

I. The definition of Floyd logic

1. Syntax

The set U of commands is:

```
\begin{array}{ll} (j:y\leftarrow\tau)\in U & \text{if } j\in\omega, y\in Y \text{ and } \tau \text{ is a $t$-type term} \\ (j:\text{ IF }\chi\text{ THEN }v)\in U & \text{if } j,v\in\omega \text{ and }\chi\in L \text{ is a formula} \\ & \text{without quantifiers} \end{array}
```

These are the only elements of U.

The set P of programs is:

$$P = {}^{d} \{ \langle (i_0 : u_0), \dots, (i_n : u_n) \rangle \in U^n : n \in \omega, i_k \neq i_l \text{ if } k \neq l \},$$

i.e. a program is a finite sequence of commands in which no two members have the same "label".

The set of *Floyd statements* is defined as:

$$S_F = {}^d \{(p, \psi) : p \in P, \psi \in L \text{ and all free variables of } \psi \text{ occur in } p\}.$$

CONVENTIONS: Throughout this paper $p \in P$ is arbitrary and the letters n, i_m, u_m denote parts of p as follows:

$$p = d \langle (i_0 : u_0), \dots, (i_n : u_n) \rangle$$
 and $i_{n+1} = d \min(\omega \setminus \{i_m : m \leq n\})$.

Further, V_p denotes the variables (elements of Y) occurring in p.

2. Semantics

First we define continuous traces of a program in a classical model of L.

Let \underline{A} be a t-type model; A denotes its universe, cf. [2].

A continuous trace of a program p in \underline{A} is a sequence $\langle (l_a, q_a) \rangle_{a \in A}$, indexed by the elements of A, such that (i)-(iii) below are satisfied:

- (i): $l_a \in \omega$ and $q_a : V_p \to A$ is a valuation, for every $a \in A$.
- (ii): $l_0 = i_0$ and for every $a \in A$

$$(l_{a+1}, q_{a+1}) = (l_a, q_a) \text{ if } l_a \notin \{i_m : m \le n\},\$$

else denoting by m the number for which $l_a = i_m$

a. if
$$u_m = "y_w \leftarrow \tau"$$
, then

$$l_{a+1} = i_{m+1}$$
 and $q_{a+1}(y_j) = \begin{cases} q_a(y_j) & \text{if } j \neq w, \\ \tau[q_a]_{\underline{A}} & \text{if } j = w \end{cases}$

where $\tau[q_a]_{\underline{A}}$ denote the value of the term τ in \underline{A} at the valuation q_a (cf. [2], p. 27).

b. if
$$u_m =$$
 "IF χ THEN v ", then

$$q_{a+1} = q_a \text{ and } l_{a+1} = \left\{ \begin{array}{ll} v & \text{if } \underline{A} \models \chi[q_a] \text{ cf. [2], p. 27)} \\ i_{m+1} & \text{otherwise.} \end{array} \right.$$

(iii): If for every $a \in A$ the valuation g_a is defined as:

$$g_a(y_j) = ^d \left\{ \begin{array}{ll} l_a & \text{if } j = \min\{k : y_k \not \in V_p\} \\ q_a(y_j) & \text{if } y_j \in V_p \end{array} \right.$$

then $\langle g_a \rangle_{a \in A}$ satisfies the induction axioms, i.e. for every $\varphi \in L$ with free variables in V_p

$$\underline{A} \models ((\varphi[g_0] \land \bigwedge_{a \in A} (\varphi[g_a] \to \varphi[g_{a+1}])) \to \bigwedge_{a \in A} \varphi[g_a]).$$

Now, a Floyd statement $(p, \psi) \in S_F$ is said to be partially correct w.r.t. continuous traces in \underline{A} (denoted by $\underline{A} \models^{pc} (p, \psi)$)

iff

for any continuous trace $\langle (l_a, q_a) \rangle_{a \in A}$ of p in \underline{A} and for any $a \in A : l_a \notin \{i_m : m \leq n\}$ implies $\underline{A} \models \psi[q_a]$.

3. Derivation system (rules of inference)

In the following we recall the so called Floyd-Hoare derivation system. This system serves to derive pairs (p, ψ) from theories $T \subseteq L$.

Let $(p, \psi) \in S_F$ and $T \subseteq L$.

The set of labels of p is defined as:

$$lab(p) =^d \{i_m : m \leqslant n+1\} \cup \{v : (\exists m \leqslant n)u_m = \text{``IF } \chi \text{ THEN } v\text{''}\}.$$

Note that lab(p) is finite.

Now, a Floyd-Hoare derivation of (p, ψ) from T consists of: a mapping $\Phi: lab(p) \to L$ together with classical first order derivations listed in (i)-(iv) below:

- (i): A derivation $T \vdash \Phi(i_0)$
- (ii): To each command $(i_m: y_j \leftarrow \tau)$ occurring in p a derivation: $T \vdash (\Phi(i_m) \rightarrow \Phi(i_{m+1})(y_j/\tau))$ where $\varphi(y/\tau)$ denotes the formula obtained from φ by substituting τ in place of y in the usual way.
- (iii): To each command $(i_m: \text{IF }\chi \text{ THEN }v)$ occurring in p derivations: $T \vdash ((\chi \land \Phi(i_m)) \to \Phi(v))$ $T \vdash ((\neg \chi \land \Phi(i_m)) \to \Phi(i_{m+1}))$
- (iv): To each $z \in (lab(p) \setminus \{i_m : m \leq n\})$ a derivation: $T \vdash (\Phi(z) \to \psi)$

Now the existence of a Floyd-Hoare derivation of (p, ψ) from T is denoted by $T \vdash^{FH} (p, \psi)$.

II. Completeness of Floyd logic

Let PA'consist of the Peano axioms (cf. [2], p. 42) together with the additional axiom

```
\begin{split} \Pi = ^d \text{``}(\forall x, b, t, n)(\exists x', b') \\ & ((\forall i \leqslant t)(\forall r, r'))((\exists z[(1 + (i + 1)b)z + r = x \land r < 1 + (i + 1)b] \land \\ & \land \exists z[(1 + (i + 1)b')z + r' = x' \land r' < 1 + (i + 1)b'] \rightarrow \\ & \rightarrow r = r')) \land \\ & \land \exists z[(1 + (t + 2)b')z + n = x' \land n < 1 + (t + 2)b'])\text{''}. \end{split}
```

 \underline{N} denotes the standard model of arithmetic.

Note that $\Pi \in L$ and $\underline{N} \models PA'$.

Theorem 1. (Completeness) Let $T \supseteq PA'$ be arbitrary.

Now, for every $(p, \psi) \in S_F$:

 (p,ψ) is Floyd-Hoare derivable from T iff

 (p,ψ) is partially correct w.r.t. continuous traces in every model of T, i.e.

 $T \vdash^{FH} (p, \psi)$ if and only if $T \models^{pc} (p, \psi)$.

DEFINITION. Let $(p, \psi) \in S_F$.

1. (p, ψ) is partially correct w.r.t. standard traces in \underline{A} iff

for any trace $\langle (l_a, q_a) \rangle_{a \in A}$ of p in \underline{A} and for any standard element m of A.

if
$$l_m \notin \{i_z : z \leqslant n\}$$
 then $\underline{A} \models \psi[q_m]$.

2. p terminates in \underline{A} for standard data in standard time iff

for any trace $\langle (l_a, q_a) \rangle_{a \in A}$ of p in \underline{A} such that all values of the function $q_0: V_p \to A$ are standard there is a standard element m of A such that

 $l_m \notin \{i_z : z \leqslant n\}.$

THEOREM 2. (Necessity of nonstandard time) Let $T \subseteq L$ be recursively enumerable and let $\underline{N} \models T$, $T \supseteq PA$. Now there exists $(p, \psi) \in S_F$ such that (i)-(iii) below are true.

- (i): (p, ψ) is partially correct w.r.t. standard traces in every model of T.
- (ii): p terminates in every model of T for standard data in standard time.
- (iii): $T \not\vdash^{FH} (p, \psi)$,
 - i.e. there is no Floyd-Hoare derivation of (p, ψ) from T.

References

- [1]~Z.~Manna, Mathematical theory of computation, McGraw-Hill 1974.
- $[2]\,$ C. C. Chang and H. J. Keisler, $\bf{Model\ Theory},$ North-Holland 1973.

Mathematical Institute of the Hungarian Academy of Sciences