Marek Tokarz

THE EXISTENCE OF MATRICES STRONGLY ADEQUATE FOR E, R AND THEIR FRAGMENTS

This is an abstract of a lecture read at the seminar of the Logic Department, Wrocław University, April 1978.

I. Let $\underline{L} = (L, \rightarrow, \vee, \wedge, \sim)$ by the usual sentential language with an infinite set v(L) of sentential variables; let $\underline{L}^+ = (L^+, \to, \vee, \wedge)$ and $\underline{L}^{I} = (L^{I}, \rightarrow)$ be the positive and pure implicational fragments of \underline{L} respectively; let $\underline{S} = (S, ...)$ be a variable ranging over $\underline{L}, \underline{L}^+, \underline{L}^I$. For any $X \subseteq S$, v(X) denotes the set of all variables occurring in the formulas in S. Endomorphisms of \underline{S} are called *substitutions*; for $X \subseteq S$ put $SbX = \{e\alpha : \alpha \in X\}$ and $e: \underline{S} \to^{hom} \underline{S}$. E and R are the sets of theorems of the well-known ANDERSON and BELNAP's systems: of entailment (cf. [1]) and of relevant implication (cf. [2]) respectively; E^+ , R^+ , E^I , R^I are their positive and pure implicational fragments. 2 is the set of all 2-valued tautologies, 2^{I} is the set of all pure implicational 2-valued tautologies. For any $X \subseteq L$, define $C_E(X)$ ($C_R(X)$) to be the smallest set of formulas including $X \cup E \ (X \cup R)$ and closed under modus ponens and adjunction; $C_E^+, C_R^+,$ C_E^I , C_R^I are defined analogously, i.e., for any set X included in the suitable S and for $C \in \{C_E^+, C_R^+, C_E^I, C_R^I\}$ put C(X) to be the smallest set of formulas of S including $X \cup E^+$ (or $X \cup R^+$ or $X \cup E^I$ or $X \cup R^I$) and closed under modus ponens (and adjunction in the case $C = C_E^+$ or $C = C_R^+$). $C_{\mathbf{2}}$, $C_{\mathbf{2}}^{I}$ are defined in an obvious way. Every operation C_{\S}^{0} defined is a structural and finitary consequence in \underline{S} (cf. [5]).

By a matrix for the language \underline{S} we shall mean any pair $\mathcal{M} = (\underline{M}, B)$, where $\underline{M} = (M, \to, ...)$ is an algebra similar to \underline{S} and $B \subseteq M$ (B is the set of designated elements of \mathcal{M}). Homomorphism of \underline{S} into \underline{M} are called valuations. For any matrix \mathcal{M} let $C_{\mathcal{M}}$ denote the matrix consequence

122 Marek Tokarz

(cf. [5]) generated by \mathcal{M} in \underline{S} . Where C^1 , C^2 are consequences in \underline{S} we set $C^1 \leqslant C^2$ to mean "for all $X \subseteq S$, $C^1(X) \subseteq C^2(X)$ ". If C is a consequence in \underline{S} , then Matr(C) denotes the class of all matrices \mathcal{M} for \underline{S} such that $C \leqslant C_{\mathcal{M}}$.

THEOREM 1. (WÓJCICKI [9]) If C is structural, then $\alpha \in C(X)$ iff for all $\mathcal{M} \in Matr(C)$, $\alpha \in C_{\mathcal{M}}(X)$.

 \mathcal{M} is said to be a strongly adequate matrix for C, if $C = C_{\mathcal{M}}$.

THEOREM 2. (ŁOŚ-SUSZKO [5], WÓJCICKI [8]) Let C be a structural consequence in \underline{S} . Then there exists a matrix strongly adequate for C iff for all $\alpha \in S$, $\underline{H} \subseteq 2^S$, if $X_0 \in \underline{H}$ and

- (i) $C(X) \neq S$, all $X \in \underline{H}$,
- (ii) $v(X) \cap v(Y) = \emptyset$, all $X, Y \in \underline{H}, X \neq Y$,
- (iii) $v(\alpha) \cap v(Y) = \emptyset$, all $X \in \underline{H} \{X_0\}$,
- $(iv) \ \alpha \in C(\bigcup \underline{H}), \\ then$
- (v) $\alpha \in C(X_0)$.

II. In this paper we discuss the problem of the existence of strongly adequate matrices for the relevant logics under consideration. We start with investigating \underline{L} and \underline{L}^+ .

THEOREM 3. (MAKSIMOVA [6]) Let C be one of the logics C_E , C_R , C_E^+ , C_R^+ . If $\alpha \in C(X \cup \{\beta\})$ and $v(\beta) \cap v(X \cup \{\alpha\}) = \emptyset$, then $\alpha \in C(X)$.

It is well-known that for any $C \in \{C_E, C_R, C_E^+, C_R^+\}$ and for any finite $X, C(X) \neq S$. What is more, for any finite $X, C(X) = C(\bigwedge X)$, where $\bigwedge X$ is the conjunction of all formulas in X. Since C is finitary, the following theorem immediately results from Th. 2, via Maksimova's Theorem:

THEOREM 4. There exists a matrix strongly adequate for C_E (C_R, C_E^+, C_R^+) .

III. In this section we examine pure implicational relevant logics. A set $X \subseteq L^I$ is said to be a *Post-complete extension* of E^I provided that X = SbX, $C_E^I(X) \neq L^I$ and for any $\alpha \notin X$, $C_E^I(Sb\alpha) = L^I$.

Lemma 1. 2^{I} is the only Post-complete extension of E^{I} .

PROOF. Put $\eta =_{df} ((p \to (p \to p)) \to p) \to [((p \to (p \to p)) \to p) \to ((p \to (p \to p)) \to p)], \quad \xi =_{df} (p \to (p \to p)) \to [(p \to (p \to p)) \to (p \to (p \to p))].$ Both η and ξ are theorems of E. Let Y be a Post-complete set, with $Y \neq \mathbf{2}^I$. Define a new consequence C^* in \underline{L}^I so that for any $X \subseteq L^I$

$$C^*(X) =_{df} C_E^I(Y \cup X).$$

Clearly $C^*(\mathbf{2}^I) = L^I$; hence $p \in C^*(\mathbf{2}^I)$. Put $eq =_{df} (p \to (p \to p)) \to p$ for every $q \in v(L^I)$. Since $\eta \in E$, then $e\mathbf{2}^I \subseteq E$, and we obtain by structurality of C^* , $ep = (p \to (p \to p)) \to p \in C^*(e\mathbf{2}^I) \subseteq C^*(E) = C^*(\emptyset) = Y$. Put $e_0p =_{df} p \to (p \to p)$. Thus $e_0((p \to (p \to p)) \to p) = \xi \to (p \to (p \to p)) \in Y$. Finally $p \to (p \to p) \in Y$ and $p \in Y$ which is impossible. The proof is concluded.

LEMMA 2. If $C_E^I \leqslant C$ for some consistent structural C, then $C \leqslant C_2^I$.

PROOF. Suppose that $\alpha \in C(X)$ and $\alpha \notin C^I(X)$ for some α, X . There is a substitution e_0 such that $e_0X \subseteq \mathbf{2}^I$ and $e_0\alpha \notin \mathbf{2}^I$. Suppose that $C(\mathbf{2}^I) = L^I$. Making use of the formulas η, ξ above, one can show that $p \in C(\emptyset)$, which is impossible; thus $C(\mathbf{2}^I) \neq L^I$, and by Lemma 1, $C(\mathbf{2}^I) = \mathbf{2}^I$. By structurality of C we get $e_0\alpha \in C(e_0X) \subseteq C(\mathbf{2}^I) = \mathbf{2}^I$ – a contradiction.

LEMMA 3. For any matrix $\mathcal{M} = (\underline{M}, B) \in Matr(C_E^I)$ and for any finite set $X \subseteq L^I$ there is a valuation $h : \underline{L}^I \to^{hom} \underline{M}$ such that $hX \subseteq B$.

PROOF. Suppose that $hX \not\subseteq B$ for any h. Then $B \neq M$, $C_{\mathcal{M}}(\emptyset) \neq L^I$ and $C_{\mathcal{M}}(X) = L^I$. By Lemma 2, $C_{\mathcal{M}} \leqslant C_{\mathbf{2}}^I$. Thus $C_{\mathbf{2}}^I(X) = L^I$ which is impossible, because every finite set of pure implicational formulas is classically consistent.

Theorem 5. There exists a matrix strongly adequate for C_E^I .

PROOF. Suppose that conditions (i)-(iv) of Theorem 2 are satisfied but $\alpha \notin C_E^I(X_0)$. C_E^I is finitary; thus we can assume that all X's in \underline{H} are finite. By Theorem 1 there is a matrix $\mathcal{M}_0 = (\underline{M}_0, B_0) \in Matr(C_E^I)$ such that for some valuation $h_0 : \underline{L}^I \to^{hom} \underline{M}_0$

(*)
$$h_0 X_0 \subseteq B_0 \text{ and } h_0 \alpha \notin B_0.$$

For any $X \in \underline{H} - \{X_0\}$ set h_X to be a valuation of \underline{L}^I in \mathcal{M}_0 such that $h_X X \subseteq B_0$; is finite, thus h_X does exist by Lemma 3. Define a new

124 Marek Tokarz

valuation h^* in \mathcal{M}_0 as follows: for every $p \in v(L)$.

$$h^*p = \begin{cases} h_0p & \text{if } p \in v(X_0 \cup \{\alpha\}), \\ h_Xp & \text{if } p \in v(X), X \in \underline{H} - \{H_0\}, \\ p & \text{otherwise.} \end{cases}$$

By (ii), (iii) in Theorem 2 we get $h^* \bigcup \underline{H} \subseteq B_0$ and by (*), $h^*\alpha = h_0\alpha \notin B_0$. Thus $\alpha \notin C_E^I(\bigcup \underline{H})$ contradicting (iv) and concluding the proof.

It immediately follows from Lemma 1 that $\mathbf{2}^{I}$ is the only Post-complete extension of R^{I} (cf. also [3]). Thus by replacing E by R in the proof above we obtain

Theorem 6. There exists a matrix strongly adequate for C_R^I .

IV. As to R, the existence of adequate matrices depends in some way on the formalisation. Some authors (cf. e.g. [7]) consider a variant of R, say R^* , defined in the language $\underline{L}^* = (L^*, \rightarrow, \vee, \wedge, \sim, f)$, f being a "false" constant; R^* is a conservative extension of R. Analogously to C_E and C_R define C_R^* as follows: for any $X \subseteq L^*$, $C_R^*(X)$ is the smallest set of \underline{L}^* -formulas including $X \cup R^*$ and closed under modus ponens and adjunction. Consider a matrix $\mathcal{M}_3^* = ((\{1,0,-1\},\rightarrow,\vee,\wedge,\sim,\overline{f}),\{0,1\})$ where $x \vee y = \max(x,y); x \wedge y = \min(x,y); \sim x = -x; \overline{f} \equiv 0; x \rightarrow y = -x \vee y$ if $x \leqslant y$ and otherwise $x \rightarrow y = -x \wedge y$. (\mathcal{M}_3 is the 3-element SUGIHARA matrix (cf. [4]) with a new nullary operation \overline{f} .) all the axioms and rules of C_R^* are satisfied in \mathcal{M}_3^* . Thus $C_R^* \leqslant C_{\mathcal{M}_3^*}$ and we obtain

$$(**) C_R^*(f) \neq L^*.$$

Now suppose that there is a matrix strongly adequate for C_R^* , i.e. $C_R^* = C_{\mathcal{M}}$ for some $\mathcal{M} = (\underline{M}, B)$, $\underline{M} = (M, \to, \lor, \land, \sim, \underline{f})$. Since f is not a theorem of R, we get $\underline{f} \notin B$. Thus $C_R^*(f) = C_{\mathcal{M}}(f) = L^*$, contradicting (**) and concluding the proof of the following

Theorem 7. There is no matrix strongly adequate for C_R^* .

References

[1] A. R. Anderson and N. D. Belnap, *Modalities in Ackermann's "rigorous implication"*, **J. Symb. Logic** 24 (1959), pp. 107–111.

- [2] N. D. Belnap, Intensional models for first degree formulas, J. Symb. Logic 32 (1967), pp. 1–22.
- [3] A. Biela and P. Hallala, Studies on Church's calculus, Bull. Sect. Logic 5 (1976), no. 2, pp. 57–62.
- [4] J. M. Dunn, Algebraic completeness results for R-mingle and its extensions, J. Symb. Logic 35 (1970), pp. 1–13.
- [5] J. Łoś and R. Suszko, *Remarks on sentential logics*, **Indagationes** Mathematicae 20 (1958), pp. 177-183.
- [6] L. L. Maksimova, *Princip razdélénija péréménnych v propozici-jonal'nych logikach* (The relevance principle in sentential logics, in Russian), **Algébra i Logika** 15 (1976), pp. 168–184.
- [7] R. K. Meyer, J. M. Dunn and H. Leblanc, *Completeness of relevant quantification theories*, **Notre Dame J. Form. Logic** 15 (1974), pp. 97–121.
- [8] R. Wójcicki, Some remarks on the consequence operation in sentential logics, Fundamenta Mathematicae 68 (1970), pp. 269–279.
- [9] R. Wójcicki, Matrix approach in methodology of sentential calculi, **Studia Logica** 32 (1973), pp. 7–37.

The Section of Logic Institute of Philosophy and Sociology Polish Academy of Sciences