Tadeusz Prucnal

ON FRIEDMAN'S PROBLEM IN MATHEMATICAL LOGIC*

(Preliminary Report)

0. Let $\mathcal{F}_{\square} = \langle F_{\square}, \wedge, \sim, \square \rangle$ be the free algebra in the class of all algebras of the type (2,1,1) free-generated by the set $V = \{p_1, p_2, \ldots\} = \{p_i : i \in$ N). By h^e we denote the extension of the function $e: V \to F_{\square}$ to the endomorphism of the algebra \mathcal{F}_{\square} .

H. Friedman in [1] conjectured that there are sets $M \subseteq F_{\square}$ such that:

$$(F1) \ V \subseteq M,$$

$$(F2) \sim \alpha \in M \Leftrightarrow \alpha \notin M,$$

$$(F3) \ \alpha \land \beta \in M \Leftrightarrow \alpha \in M \land \land \beta \in M,$$

$$(F3) \alpha \wedge \beta \in M \Leftrightarrow \alpha \in M \wedge \beta \in M,$$

$$(F4) \square \alpha \in M \Leftrightarrow \bigvee_{e:V \to F_{\square}} h^{e}(\alpha) \in M,$$

for every $\alpha, \beta \in F_{\square}$.

In this paper we will show that there exists a set $M \subseteq F_{\square}$ such that the conditions (F1) - (F4) are satisfied.

We shall use the symbols: \Leftrightarrow , \Rightarrow , \wedge , \vee as the well-known propositional connectives from metalanguage. The symbols \forall and \exists will also be used as quantifiers from metalanguage.

1. Let now $\mathcal{F} = \langle F, \vee, \wedge, \rightarrow, \sim \rangle$ be the free algebra in the class of all algebras of the type (2,2,2,1) free-generated by the set V. By T we denote the well-known McKinsey-Tarski transformation (cf. [2]), which maps Finto F_{\square} in the following way:

a.
$$T(p_i) = \Box p_i$$
,
b. $T(\sim \alpha) = \Box \sim T(\alpha)$,

^{*}This paper was also presented at the seminar of the Department of Logic, Jagiellonian University, Cracow, March 6, 1978.

138 Tadeusz Prucnal

c.
$$T(\alpha \wedge \beta) = T(\alpha) \wedge T(\beta)$$
,
d. $T(\alpha \vee \beta) = \sim [\sim T(\alpha) \wedge \sim T(\beta)]$,
e. $T(\alpha \to \beta) = \square \sim [T(\alpha) \wedge \sim T(\beta)]$
for every $i \in N$ and $\alpha, \beta \in F$.

By INT we mean the set of all theorems of intuitionistic propositional logic, and by S4 – the set of all theorems of modal logic. $Cn_{INT}(X)$ is the smallest set containing $INT \cup X \subseteq F$ and closed under the modus ponens rule. Similarly: $Cn_{S4}(Y)$ is the least set containing $Y \cup S4 \subseteq F_{\square}$ and closed under the modus ponens rule: $\sim (\alpha \land \sim \beta), \alpha/\beta$.

We have:

LEMMA 1. (Cf. [7]). For every $\gamma \in F$ and $X \subseteq F$:

$$\gamma \in Cn_{INT}(X) \Leftrightarrow T(\gamma) \in Cn_{S4}(T(X)),$$

where T(X) is the image of the set X.

By F_T we denote the least set containing the image T(F) and closed with respect to: \land, \sim , and \Box .

LEMMA 2. (Cf. [6]). For every $\alpha \in F_T$ there are $\gamma_1, \gamma_2, \ldots, \gamma_n, \delta_1, \delta_2, \ldots, \delta_n \in F$ such that:

$$\alpha \equiv \sim [T(\gamma_1) \wedge \sim T(\delta_1)] \wedge \ldots \wedge [T(\gamma_n) \wedge \sim T(\delta_n)],$$

where
$$\alpha \equiv \beta \Leftrightarrow_{df} \sim (\alpha \land \sim \beta) \land \sim (\beta \land \sim \alpha) \in S4$$
.

Let B be the least set containing $\{\sim p_i: i \in N\}$ and closed under the connectives: $\vee, \wedge, \rightarrow$, and \sim .

Putting

$$ML =_{df} \{ \gamma \in F : \forall_{e:V \to B} h^e(\gamma) \in KP \},$$

where KP is an intermediate logic obtained by adding to INT the axioms: $(\sim \gamma \rightarrow \alpha \lor \beta) \rightarrow (\sim \gamma \rightarrow \alpha) \lor (\sim \gamma \rightarrow \beta), \ \alpha, \beta \in F$, we obtain an intermediate logic such that $KP \not\subseteq ML$.

We have:

LEMMA 3. (Cf. [3]). For every $\alpha, \beta \in F$:

$$\alpha \vee \beta \in ML \Leftrightarrow \alpha \in ML \, \forall \beta \in ML.$$

This ML has also the following property¹:

LEMMA 4. (Cf. [5]). For every $\alpha, \beta \in F$:

$$\alpha \to \beta \in ML \Leftrightarrow \forall_{e:V \to F}[h^e(\alpha) \in ML \Rightarrow h^e(\beta) \in ML].$$

Putting

$$ML^{(T)} =_{df} Cn_{S4}(T(ML)),$$

we obtain:

Lemma 5.

- (i) $\gamma \in ML \Leftrightarrow T(\gamma) \in ML^{(T)}$, for every $\gamma \in F$.
- (ii) $\alpha \in ML^{(T)} \Leftrightarrow \Box \alpha \in ML^{(T)}$, for every $\alpha \in F_{\Box}$. (iii) $\sim (\sim \Box \alpha \land \sim \Box \beta) \in ML^{(T)} \Leftrightarrow \Box \alpha \in ML^{(T)} \lor \Box \beta \in ML^{(T)}$, for every $\alpha, \beta \in F_T$.

Let now ML^{\square} be a set defined as follows:

$$ML^{\square} =_{df} \{ \alpha \in F_{\square} : \forall_{e:V \to F_T} h^e(\alpha) \in ML^{(T)} \}.$$

Lemma 6. For every $\gamma \in F$:

$$\gamma \in ML \Leftrightarrow T(\gamma) \in ML^{\square}.$$

LEMMA 7. For every $\alpha, \beta \in F_{\square}$:

- (i) $S4 \subsetneq ML^{\square}$,
- $(ii) \ \alpha, \sim (\alpha \land \sim \beta) \in ML^{\square} \Rightarrow \beta \in ML^{\square},$ $(iii) \ \alpha \in ML^{\square} \Rightarrow \forall_{e:V \to F_{\square}} h^{e}(\alpha) \in ML^{\square},$
- (iv) $\alpha \in ML^{\square} \Leftrightarrow \square \alpha \in ML^{\square}$,
- $(v) \ \Box \alpha \in ML^{\square} \ \forall \Box \beta \in ML^{\square} \Leftrightarrow \sim (\sim \Box \alpha \land \sim \Box \beta) \in ML^{\square}.$

We define now a set $A \subseteq F_{\square}$ in the following way:

$$\beta \in A \Leftrightarrow \exists_{e:V \to F \sqcap} \exists_{\alpha \in F - ML} \Box \beta = \sim (\Box \alpha \wedge h^e(\alpha)),$$

for every $\beta \in F_{\square}$.

Thus:

 $^{^1\}mathrm{Let}$ us note that Lemma 4 states that the calculus ML is structurally complete in the sense of W. A. Pogorzelski [4].

140 Tadeusz Prucnal

LEMMA 8. $Cn_{S4}(ML^{\square} \cup A \cup V \cup \{\sim T(\gamma) : \gamma \in F - ML\}) \neq F_{\square}.$

Let $M_0 =_{df} Cn_{S4}(ML^{\square} \cup A \cup V \cup \{\sim T(\gamma) : \gamma \in F - ML\})$ and let M_* be the maximal element in $\{M \subseteq F_{\square} : M_0 \subseteq M = Cn_{S4}(M) \neq F_{\square}\}$. Thus we have:

THEOREM.² The set M_* satisfies the conditions (F1) - (F4).

References

- [1] H. Friedman, One hundred and two problems in mathematical logic, Journal of Symbolic Logic, Vol. 40 (1975), pp. 113–129.
- [2] J. C. C. McKinsey and A. Tarski, Some theorems about the sentential calculi of Lewis and Heyting, Journal of Symbolic Logic, Vol. 13 (1948), pp. 1–15.
- [3] Ú. T. Médvédev, Intérprétaciá logičeskih formul pośrédstvam finitnyh zadač i sváz éé s téorý réalizuémosti, **Doklady Akadémii Nauk SSSR**, vol. 148 (1963), pp. 771–774.
- [4] W. A. Pogorzelski, Structural completeness of the propositional calculus, **Bull. Acad. Polon. Sci.**, Ser. Math. Astr. et Phys., Vol. 19 (1971), pp. 349–351.
- [5] T. Prucnal, Structural completeness of Medvedev's propositional calculus, Reports on Mathematical Logic, No. 6 (1976), pp. 103–105.
- [6] H. Rasiowa, **An algebraic approach to non-classical logics**, North-Holland Publishing Company, Amsterdam, PWN Polish Scientific Publishers, Warszawa 1974.
- [7] H. Rasiowa and R. Sikorski, The mathematics of metamathematics, PWN Warszawa 1963.

Institute of Mathematics Pedagogical College, Kielce

 $^{^2\}mathrm{Dr}$ J. Perzanowski informed me that an analogous results had been obtained by Kit Fine (unpublished).