Hajnal Andréka István Németi

ON UNIVERSAL ALGEBRAIC LOGIC AND CYLINDRIC ALGEBRAS

This is an abstract of the dissertation [1] which solved some problems raised in [2]. The subject is General Algebraic Logic in the sense of Rasiowa [5], but now for first order logics. Here we discuss the algebraic problems; their connections with (nonclassical and classical) logics were explained in [2]. The variety of cylindric algebras [4] was introduced for the classical first order logic; the present general algebraic (universal algebraic) approach is a generalization of the theory of that variety [4] to make it applicable to other first o. logics as well (cf. Freeman [6]).

Throughout, α, β, γ denote *infinite* ordinals, ω is the set of natural numbers, and Ord is the class of *in finite* ordinals.

Definition 1.1:

- 1. By a type-scheme we understand a quadruple $t = \langle T, \delta, \tau, c \rangle$ where T is a set, $\delta: T \to \omega$, $\tau: T \to \omega$, $c \in T$ and $\delta(c) = \tau(c) = 1$.
- 2. A type-scheme t defines a $similarity\ type\ t_{\alpha}$ for each infinite ordinal α as follows:

```
t_{\alpha}: \Omega_{\alpha} \to \omega, where the set \Omega_{\alpha} of operation symbols is: \Omega_{\alpha} = {}^{d} \{f_{i_{1}...i_{n}}: f \in T, i_{1},...,i_{n} \in \alpha, n = \delta(f)\} with arities: t_{\alpha}(f_{i_{1}...i_{n}}) = {}^{d} \tau(f). (Here f_{i_{1}...i_{n}} stands for the n+1-tuple (f,i_{1},...,i_{n}).)
```

Example ([4]): The similarity type of α -dimensional cylindric algebras is: $t_{\alpha} = \{(\cdot, 2), (-, 1), (c_i, 1), (d_{ij}, 0) : i, j \in \alpha\}.$

The "cylindric type-scheme" consists of $T = \{\cdot, -, c, d\}$ and $\delta(\cdot) = \delta(-) = 0$, $\delta(c) = 1$, $\delta(d) = 2$; $\tau(c) = 2$ etc.

The universe of an algebra \underline{A} is denoted by A.

DEFINITION 1.3. ([4], D. 2.6.1): Let t be a type-scheme, \underline{A} an algebra of type t_{α} , and let $\xi : \beta \rightarrow \alpha$ be arbitrary. Now, $\underline{Rd}^{\xi}\underline{A}$ is a new algebra of type t_{β} obtained from A as follows:

The universe of $\underline{Rd}^{\xi}\underline{A}$ is A.

The interpretation of the operation symbol $f_{i_1...i_n} \in \Omega_{\alpha}$ in the new algebra coincides with the interpretation of $f_{\xi(i_1)...\xi(i_n)}$ in the old one, i.e. $f_{i_1...i_n}^{\underline{Rd}^{\xi}} = f_{\xi(i_1)...\xi(i_n)}^{\underline{A}}$.

 $\underline{Rd}^{\xi}\underline{A}$ is called a generalized reduct of A along ξ .

If K is a class of algebras of similarity type t_{α} , then $Rd^{\xi}K = \{\underline{Rd}^{\xi}\underline{A} : \underline{A} \in K\}$.

An element $b \in A$ of an algebra \underline{A} of type t_{α} is said to be *sensitive* to the index $i \in \alpha$ if b is not a fixed point of the operation $c_i^{\underline{A}}$ (if $c_i^{\underline{A}}(b) \neq b$).

DEFINITION 1.5 ([4], D. 1.11.1.): An algebra is locally finite dimensional if each of its elements is sensitive to finitely many indices only, i.e. iff $(\forall a \in A)(\{i \in \alpha : c_i^A(a) \neq a\})$ is finite. An algebra is dimension complemented if to any finite subset B of its universe there are infinitely many indices to which no element of B is sensitive.

DEFINITION 1.6 ([4], D. 2.6.28): Let $\alpha \leq \beta$ (i.e. $t_{\alpha} \subseteq t_{\beta}$). Let \underline{B} be an algebra of type t_{β} , and let \underline{B}' be its reduct of type t_{α} (i.e. we omit the operations which have indices greater than α). An algebra $\underline{A} \subseteq \underline{B}'$ is said to be a *neat subreduct* of \underline{B} if the elements of \underline{A} are not sensitive in \underline{B} to the indices greater than α , i.e. if

$$(\forall a \in A)(\forall i \geqslant \alpha)c_i^{\underline{B}}(a) = a.$$

If K is a class of algebras of similarity type t_{β} , then $SNr_{\alpha}K$ denotes the class of those neat subreducts of elements of K, which are of type t_{α} .

DEFINITION 3.2: By a system of varieties of type-scheme t we mean a sequence $\langle V_{\alpha} \rangle_{\alpha \in Ord}$, for which the following 1.-3. hold:

- 1. V_{α} is a variety of type t_{α} , for every $\alpha \in Ord$.
- 2. $Rd^{\xi}V_{\alpha} \subseteq V_{\gamma}$ for every inclusion $\xi : \gamma \mapsto \alpha$.
- 3. For every pair of ordinals $\gamma \leqslant \alpha$ and algebra \underline{A} of type t_{α} : If every generalized reduct of type t_{γ} of \underline{A} is in V_{γ} , then the original algebra \underline{A} is in V_{α} , too (i.e. $[(\forall \xi : \gamma \mapsto \alpha)\underline{R}\underline{d}^{\xi}\underline{A} \in V_{\gamma}] \Rightarrow \underline{A} \in V_{\alpha}$.

NOTATION: From now on $\langle V_{\alpha} \rangle_{\alpha \in Ord}$ stands for an arbitrary system of varieties belonging to some type-scheme t, and

 $Vf_{\alpha} = {}^{d} \{ \underline{A} \in V_{\alpha} : \underline{A} \text{ is locally finite dimensional} \}$ $Vc_{\alpha} = {}^{d} \{ A \in V_{\alpha} : \underline{A} \text{ is dimension complemented} \}$ $Vn_{\gamma\alpha} = {}^{d} SNr_{\gamma}V_{\alpha}.$

Theorem 3.7: ω is the least ordinal ρ for which it is true that for every system of varieties and ordinal α , the sequence $\langle V n_{\alpha\alpha+\rho+\nu} \rangle_{\nu \in \omega \cup Ord}$ is constant, i.e. $V n_{\alpha\alpha+\rho} = V n_{\alpha\alpha+\rho+\nu}$ for every ordinal ν .

NOTATION: $Vn_{\alpha} = {}^{d} Vn_{\alpha\alpha+\omega}$.

NOTATIONS: The letters H, S, P, P^r, Up, Sd denote the operators of taking homomorphic images, subalgebras, direct product, reduced products, ultraproducts and sandwich-subalgebras (see [3]), respectively. That is, if K is a class of algebras, then HK denotes the class of all homomorphic images of elements of K, etc.

REMARK: The operators SdUp, SUp, SP^r , HSP are known to coincide with the formation of hulls axiomatizable by \sqcap_2 -formulas ($\forall \exists$ -formulas), by universal formulas, by universal Horn-formulas (quasi-identities), and by identities, respectively.

Theorem 3.14-3.18: (For any $\langle V_{\beta} \rangle_{\beta \in Ord}$ and any α :)

- 1. $V f_{\alpha} \subseteq V c_{\alpha} \subseteq V n_{\alpha} = SP^r V n_{\alpha} \subseteq V_{\alpha}$.
- 2. If $|\alpha| = \omega$. then

 $\overline{SdUpVf_{\alpha} = Sd}UpVc_{\alpha}$

 $SUpVf_{\alpha} = SUpVc_{\alpha} = SP^rVf_{\alpha} = SP^rVc_{\alpha},$

 $H S P V f_{\alpha} = H S P V c_{\alpha},$

and only these equalities are valid, i.e. there is a system of varieties $\langle V_{\beta} \rangle_{\beta \in Ord}$ such that the classes Vf_{α} , Vc_{α} , $SPVf_{\alpha}$, $SPVc_{\alpha}$, $SdUpVf_{\alpha}$, $SUpVf_{\alpha}$, $HSPVf_{\alpha}$, Vn_{α} , HVn_{α} , V_{α} , are all different from one another (for any countable α).

3. If $\alpha \geqslant \omega^+$, then no equality is valid except $SUpVf_{\alpha} = SP^rVf_{\alpha}$:

There is a system of varieties $\langle V_{\beta} \rangle_{\beta \in Ord}$ for which the classes Vf_{α} , Vc_{α} , $SPVf_{\alpha}$, $SPVc_{\alpha}$, $SdUpVf_{\alpha}$, $SdUpVc_{\alpha}$, $SUpVf_{\alpha}$, $SUpVc_{\alpha}$, $HSPVc_{\alpha}$, $HSPVc_{\alpha}$, Vn_{α} , HVn_{α} , V_{α}

are all different from one another, i.e., for instance $HSPVf_{\alpha} \neq$

 $HSPVc_{\alpha}$. Only $SUpVc_{\alpha} = Sp^{r}Vc_{\alpha}$ is not yet known to be valid or not.

DEFINITION 4.1: A system of varieties $\langle V_{\alpha} \rangle_{\alpha \in Ord}$ satisfies the "generating condition", if in every algebra of V_{ω} , elements sensitive only to finitely many indices generate no element sensitive to all indices $(i \in \omega)$. More precisely: $(\forall \underline{A} \in V_{\omega})(\forall m \in \Omega_{\omega})$ [if $a_1, \ldots, a_n \in A$ are sensitive only to finitely many indices, then $(\exists i \in \omega)c_i(m(a_1, \ldots, a_n)) = m(a_1, \ldots, a_n)$ in \underline{A}].

THEOREM 4.5: Let the system of varieties $\langle V_{\alpha} \rangle_{\alpha \in Ord}$ satisfy the generating condition. Now, for every $\alpha \in Ord$:

 $SdUpVf_{\alpha} = SdUpV\overline{c_{\alpha}}$

 $SUpV f_{\alpha} = SUpV c_{\alpha} = SP^{r}V f_{\alpha} = SP^{r}V c_{\alpha} = Vn_{\alpha}$

 $H S P V f_{\alpha} = H S P V c_{\alpha} = H V n_{\alpha},$

and only these equalities are valid, i.e., there is a system of varieties $\langle V_{\alpha} \rangle_{\alpha \in Ord}$ satisfying the generating condition, such that the classes Vf_{α} , Vc_{α} , $SPVf_{\alpha}$, $SPVc_{\alpha}$, $SdUpVf_{\alpha}$, $SUpVf_{\alpha}$, $HSPVf_{\alpha}$, V_{α} are all different.

REMARK: The cylindric algebras of [4] form a systems of varieties $\langle CA_{\alpha}\rangle_{\alpha\in Ord}$ satisfying the generating condition; therefore Th. 4.5. applies. Surprisingly, the inequalities of Th. 4.5. also hold for them with the exception that $HVn_{\alpha}=Vn_{\alpha}$ is true for cylindric algebras. The following problem is open also for cylindric algebras.

PROBLEM: 1. Find a system of varieties $\langle V_{\alpha} \rangle_{\alpha \in Ord}$ and a Σ_2 -formula φ (i.e. $\varphi \equiv \exists \overline{x} \forall \overline{y} u(\overline{x} \ \overline{y})$) such that $V f_{\alpha} \models \varphi$ and $V c_{\alpha} \not\models \varphi$ for some countable α . (By Th. 3.14. $V f_{\alpha}$ and $V c_{\alpha}$ are equivalent w.r.t. Π_2 -formulas.)

2. Find $\langle V_{\alpha} \rangle_{\alpha \in Ord}$ and a first order φ such that $V f_{\alpha} \models \varphi$ and $V c_{\alpha} \not\models \varphi$ for

some countable α . What is the smallest prenex for φ (Σ_2 ?, Π_3 ?, Σ_3 ?, ...). 3. Solve the above problems for varieties satisfying the generating condition (and for arbitrary α).

References

 H. Andréka, Universal Algebraic Logic, dissertation, Budapest, 1977, in Hungarian.

- [2] H. Andréka, T. Gergely, I. Németi, On Universal Algebraic Construction of Logics, Studia Logica, XXXVI, 1-2 (1977).
 - [3] C. C. Chang, H. J. Keisler, Model Theory, North Holland, 1973.
- $[4]\,$ L. Henkin, J. D. Monk, A. Tarski, Cylindric Algebras. Part I, North Holland, 1971.
- $[5]\,$ H. Rasiowa, An algebraic approach to non-classical logics, North Holland, 1974.
- [6] Freeman, Algebraic semantics for modal propositional logics, Zeitschrift für Math. Logik und Grundlagen der Mathematik (1976).

Mathematical Institute of the Hungarian Academy of Sciences Budapest