Zbigniew Stachniak

SOME NOTES ON CHARACTERISTIC CONSEQUENCE OPERATIONS

This is an abstract of a lecture read at the Seminar of the Logic Department, Wrocław University, March 1978.

§1. Introduction

By a sentential language we shall understand an arbitrary absolutely free algebra L of a fixed finitary similarity type. A family Υ of subsets of L is said to be a closure system on L iff Υ is closed under arbitrary intersections, i.e. $\bigcap F \in \Upsilon$ if $F \subseteq \Upsilon$. Clearly $L \in \Upsilon$. A consequence operations on L is a function $C: P(L) \to P(L)$, from the power set of L, P(L), into P(L) such that c1) $X \subseteq C(X) = C(C(X))$, c2) if $X \subseteq Y$, then $C(X) \subseteq C(Y)$, $X, Y \subseteq L$.

It is known [BS] that every closure system Υ on L defines a consequence operation C_{Υ} on L such that $C_{\Upsilon}(X) = X$ iff $X \in \Upsilon$. A consequence operation C is:

- finite if $C(X) = \bigcup \{C(X_f) : X_f \subseteq X \text{ and } card(X_f) < \aleph_0 \}$ for every $X \subseteq L$,
- L-compact (compact) provided that if C(X) = L, then $C(X_f) = L$ for some finite $X_f \subseteq X$,
- structural if for every endomorphism e of L ($e \in End(L)$) $e(C(X)) \subseteq C(e(X))$,
- N-structural if for every $e \in End(L)$, if C(X) = L, then C(e(X)) = L.
- standard if C is both finite and structural.

§2. Characteristic consequences

Let L be an arbitrary sentential language.

DEFINITION 2.1. A consequence operation 0 is *characteristic* iff for every $X \subseteq L$ if $0(X) \neq X$, then 0(X) = L.

Example 2.2. For every consequence operation C we shall define the operation 0_c on L as follows.

o)
$$0_c(X) = \begin{cases} X & \text{if } C(X) \neq L \\ L & \text{if } C(X) = L. \end{cases}$$

For every C the operation 0_c defined in o) is a characteristic consequence operation on L. We shall call it the *characteristic consequence of* C.

DEFINITION 2.3. Let 0 be a characteristic consequence. The set \mathbb{K}_0 of all consequences C such that $0_c = 0$ is said to be the *characteristic class of* 0.

Note that the set of all characteristic consequences operations on L forms a complete sublattice of the lattice of all consequences on L, with the lattice order defined in 2.5. But in general it is not true for every characteristic class \mathbb{K}_0 (compare Theorem 2.7).

Let us introduce some definitions.

Let $Th(C) = \{X \subseteq L : C(X) = X\}$ and let S(C) denote the set of all closure systems Υ which satisfy the following conditions:

- i) for every $X \in \Upsilon$, $X \in Th(C)$,
- ii) for every $X\subseteq L$, if $C(X)\neq L$, then there exists $Y\in \Upsilon$ such that $X\subseteq Y$ and $Y\neq L$.

By $S^0(C)$ we denote a subset of S(C) such that for every $\Upsilon \in S^0(C)$ the consequence X_{Υ} such that $Th(C_{\Upsilon}) = \Upsilon$ is a structural one.

DEFINITION 2.4. A consequence operation C is said to be *correct (structurally correct)* iff $S(C)(S^0(C))$ is closed under arbitrary intersections.

DEFINITION 2.5. Let C_1, C_2 be consequence operations. $C_1 \leq C_2$ iff for all $X \subseteq L$, $C_1(X) \subseteq C_2(X)$.

Lemma 2.6. If \mathbb{K}_0 is the characteristic class of 0, then:

i) if $C_1, C_2 \in \mathbb{K}_0$ and $C_1 \leqslant C \leqslant C_2$, then $C \in \mathbb{K}_0$, for all C_1, C_2, C ,

ii) $C \in \mathbb{K}_0$ iff $Th(C) \in S(0)$.

Theorem 2.7. The following conditions are equivalent

- ii) \mathbb{K}_0 is a complete lattice,
- ii) \mathbb{K}_0 is a complete sublattice of the lattice of all consequences on L,
- iii) 0 is correct.

PROOF. If F is a family of consequences from \mathbb{K}_0 , then we shall symbolically denote the least upper bound: in the lattice of all consequences on L by supF and in \mathbb{K}_0 (if it exists) by sup_0F . Observe that for every $F \subseteq \mathbb{K}_0$, $\bigcap F \in \mathbb{K}_0$ and that for every $C \in \mathbb{K}_0$, $C \ge 0$ (because $\bigcap \mathbb{K}_0 = 0$).

 $i \to ii$ For every family $F \subseteq \mathbb{K}_0$, $0 \leqslant sup F \leqslant sup_0 F$. Thus by Lemma 2.6 1) \mathbb{K}_0 is a sublattice of the lattice of all consequences on L. $ii \to i$ is trivial.

 $i \to iii$ Let $\mathcal{F} \subseteq S(0)$ and let for every $\Upsilon \in \mathcal{F}$, C_{Υ} be a consequence such that $Th(C_{\Upsilon}) = \Upsilon$. By Lemma 2.6 ii), $F = \{C_{\Upsilon} : \Upsilon \in \mathcal{F}\} \in \mathbb{K}_0$, and $sup_0 F \in \mathbb{K}_0$. But $Th(sup_0 F) = \bigcap_{\Upsilon \in \mathcal{F}} Th(C_{\Upsilon}) = \bigcap_{\Upsilon} \mathcal{F}$. Using Lemma 2.6 ii) again we obtain $\bigcap \mathcal{F} \in S(0)$.

iii \rightarrow i If F is a subset of \mathbb{K}_0 , then, by Lemma 2.6 ii), $\bigcap_{c \in F} Th(C) \in S(0)$,

so $sup_0 F \in \mathbb{K}_0$ because $Th(sup_0 F) = \bigcap_{c \in F} Th(C) \blacksquare$

Observe that if in Theorem 2.7 we replace the sign " \mathbb{K}_0 " by the sign " SK_0 ", where $SK_0 = \{C \in \mathbb{K}_0 : C \text{ is structural}\}$, and "correct" by "structurally correct", then the theorem remains true.

LEMMA 2.8. Let 0_t be a characteristic consequence such that for every $X \subseteq L$, $0_t(X) = X$. Then $card(\mathbb{K}_{0_t}) = 1$.

THEOREM 2.9. If $C \neq 0_t$ (where 0_t is as in Lemma 2.8), then the following conditions are equivalent:

- i) C is compact,
- ii) 0_c is compact,
- iii) 0_c is finite.

Proof. $i \leftrightarrow ii$ is obvious.

ii \to iii Assume that $0_c(X) = L$ and $X \neq L$. Thus $0_c(X_f) = L$ for some finite $X_f \subseteq X$ (0_c is compact). Hence $0_c(X) = \bigcup \{0_c(X_f) : X_f \subseteq X \text{ and } \}$

 $card(X_f) < \aleph_0$.

iii \rightarrow ii Let 0_c be a finite consequence and $0_c(X) = L$, $X \subseteq L$.

- 1) If $X \neq L$ and for all finite $X_f \subseteq X$, $0_c(X_f) \neq L$, then $L = 0_c(X) = \bigcup \{0_c(X_f) : X_f \subseteq X \text{ and } card(X_f) < \aleph_0\} = X$. This contradicts the assumption that $X \neq L$.
- 2) If X = L, then for some $Y \neq L$, $0_c(Y) = L$ (because $0_c \neq 0_t$). Further proof in this case is analogous to 1)

Corollary 2.10. Every finite characteristic consequence is correct.

PROOF. Let $\mathcal{F} \subseteq S(0)$ and let $0(X) \neq L$ for some $X \subseteq L$ and some finite characteristic consequence 0. We will show that $X \subseteq Y$ for some $L \neq Y$. By both Theorem 2.9 and Lindenbaum's theorem (see [BS]) there exists a set $Y \neq L$ such that $X \subseteq Y$, 0(Y) = Y and $0(Y \cup \{a\}) = L$ for every $a \in L \setminus Y$.

Observe that for every $\Upsilon \in \mathcal{F}$, $Y \in \Upsilon$. Hence $Y \in \bigcap \mathcal{F}$ and $\bigcap \mathcal{F} \in S(0)$

Theorem 2.11. If $C \neq 0_t$ (where 0_t is as in Lemma 2.8), then the following conditions are equivalent:

- i) C is compact and N-structural,
- ii) 0_c is compact and N-structural,
- iii) 0_c is standard.

Proof. $i \leftrightarrow ii$ is obvious.

ii \to iii According to Theorem 2.9 it will be enough to show that 0_c is structural. Let $e \in End(L)$ and let $X \subseteq L$. If $0_c(X) = L$, then $0_c(eX) = L$ $(0_c$ is N-structural) and $e(0_c(X) \subseteq o_c(X))$. If $0_c(X) \neq L$, then $e(0_c(X)) = e(X) \subseteq 0_c(e(X))$. So 0_c is structural.

iii \to ii We must prove that 0_c is N-structural (see Theorem 2.9). Observe that if 0_c is not N-structural, then for some $e \in End(L)$ and for some finite $X_f \subseteq L$, $e(X_f) = e(L)$. But this is impossible because $card(e(L)) \neq card(e(X_f))$

§3. Characteristic consequence and maximality

In this section we shall consider only such characteristic consequences 0 for which the set $S\mathbb{K}_0 = \{C \in \mathbb{K}_0 : C \text{ is structural}\}\$ is non-empty.

DEFINITION 3.1. A structural consequence C is said to be maximal iff for every structural C_1 , $C < C_1$ implies $C_1(\emptyset) = L$.

DEFINITION 3.2. A characteristic consequence 0 has a maximal characterization iff for every characteristic consequence $0^+ > 0$, if for some $\Upsilon^+ \in S^0(0^+)$, for some $\Upsilon \in S^0(0)$ and for every $\Upsilon'' \in S^0(0)$, $\Upsilon'' \subseteq \Upsilon$ implies $\Upsilon^+ \subset \Upsilon''$, then $0^+(\emptyset) = L$.

LEMMA 3.3. Let C be a maximal consequence and let \mathbb{K}_0 be the characteristic class of 0. Then if $C \in \mathbb{K}_0$, then $S\mathbb{K}_0$ is a complete lattice.

Corollary 3.4. Let C_1 , C_2 be maximal consequences. Then

$$C_1 = C_2 \text{ iff } 0_{c_1} = 0_{c_2}.$$

Theorem 3.5. The following conditions are equivalent:

- i) there exists a maximal consequence in \mathbb{K}_0 ,
- ii) 0 is structurally correct and has a maximal characterization.

PROOF. i \rightarrow ii By Lemma 3.3 and the remark following Theorem 2.7, it will be enough to show that 0 has a maximal characterization. Observe that for every $\Upsilon \in S^0(0)$, Th(C) (where C is maximal and $C \in \mathbb{K}_0$). If for some $0^+ > 0$ there exists $\Upsilon^+ \in S^0(0^+)$ and $\Upsilon \in S^0(0)$ such that for every $\Upsilon'' \subseteq \Upsilon$, $\Upsilon^+ \subset \Upsilon''$, then $\Upsilon^+ \subset Th(C)$. Hence $C_{\Upsilon^+} > C$ and $C_{\Upsilon^+}(\emptyset) = L$ (where the $C_{\Upsilon^+} = \Upsilon^+$). This implies that $0^+(\emptyset) = L$ as well (because $C_{\Upsilon^+} \in \mathbb{K}_{0^+}$).

ii \to i Let C denote the greatest consequence from $S\mathbb{K}_0$. If for some structural C^+ , $C^+ > C$, then $0_{c^+} > 0_c = 0$. Observe that $\Upsilon^+ = Th(C^+)$ and $\Upsilon = Th(C)$ fulfill the assumption of Definition 3.2 and since 0 has a maximal characterization, then $0^+(\emptyset) = L = C^+(\emptyset)$. This shows that C is maximal \blacksquare

THEOREM 3.6. Let 0 be a finite characteristic consequence. Then there exists a maximal consequence C^0 such that for every $C \in S\mathbb{K}_0$ $C \leq C^0$.

PROOF. Let \mathcal{Y} be the set of all such subsets Y of L that $0(Y) \neq L$ and for every $e \in EndL$, $e(Y) \subseteq Y$. By the assumption that 0 is finite and by Zorn's lemma we conclude that there exists a maximal (with respect to inclusion) set Y^+ in \mathcal{Y} .

Let $C^+(X) = C''(X \cup Y^+)$, where C'' is the greatest consequence of the complete lattice $S\mathbb{K}_0$ (C'' does exist by Corollary 2.10 and Theorem 2.7). C^+ is structural, Post-complete (see [T]) and $C^+(\emptyset) \neq L$.

Now let C^0 be such a structural and structurally complete consequence (see [T]) that $C^0 \geqslant C^+$, C^0 is Post-complete and $C^0(\emptyset) = C^+(\emptyset)$. By Theorem 6 from [T] C^0 is maximal and for every $C \in S\mathbb{K}_0$ $C \leqslant C'' \leqslant C^0$. This concludes the proof

COROLLARY 3.7. (Dziobiak, unpublished). For every compact consequence C there exists a maximal consequence C^0 such that $C \leq C^0$.

References

- [BS] D. J. Brown and R. Suszko, *Abstract logics*, **Dissertationes** Mathematicae, vol. 102 (1973).
- [T] M. Tokarz, Connections between some notions of completeness of structural propositional calculi, Studia Logica, vol. 32 (1973).
- [W] R. Wójcicki, Investigations into methodology of sentential calculi (I), Warsaw (1971).

Department of Logic Wrocław University