ON THE DEGREE OF INCOMPLETENESS OF MODAL LOGICS (ABSTRACT)

In the following we will use the well-known correspondence between modal logics and varieties of modal algebras in our investigation of the function which assigns to a modal logic its degree of incompleteness. A modal algebra is an algebra $A = (A, +, \cdot, ', \circ, 0, 1)$ where $(a, +, \cdot, ', 0, 1)$ is a Boolean algebra and \circ is a unary operation satisfying $1^{\circ} = 1$ and $(x \cdot y)^{\circ} = 1$ $x^{\circ} \cdot y^{\circ}$; of is called a modal operator. A variety of algebras is a class of algebras closed under the operations of forming homomorphic images, subalgebras as and direct products, and if \underline{K} is a class of algebras then $V(\underline{K})$ denotes the smallest variety containing \underline{K} . The variety of modal algebras is denoted by \underline{M} , the subvariety of \underline{M} defined by the equation $x^{\circ} \cdot x = x^{\circ}$ by \underline{MR} and the subvariety of \underline{M} defined by the equation $x^{\circ^n} = x^{\circ^{n-1}}$, n a natural number, by \underline{M}^n . Here $x^{\circ^0} = x$, $x^{\circ^n} = (x^{\circ^{n-1}})^{\circ}$, n a natural number. We write $\Lambda(\underline{K})$ for the lattice of subvarieties of a variety \underline{K} . If \underline{K} , \underline{K}' are varieties such that $\underline{K} \subsetneq \underline{K}'$ but for no variety \underline{K}'' $\underline{K} \subsetneq \underline{K}'' \subsetneq \underline{K}'$ then we say that \underline{K}' is a cover of \underline{K} . The smallest normal modal logic – containing the axiom $\Box(p \to q) \to (\Box p \to \Box q)$ and closed under the inference rules of modus ponens, substitution and necessitation - will be denoted by K; the lattice of modal logics which are extensions of K by $\Lambda(K)$. There is an obvious translation which assigns to any modal formula φ an <u>M</u>-polynomial $\widehat{\varphi}$. The mapping

$$*: \Lambda(K) \to A(M)$$

defined by

$$L \to L^* = \{ A \in M | A \models \widehat{\varphi} = 1, \varphi \in L \}$$

establishes an anti-isomorphism. In particular, $T^* = \underline{MR}$ (where T is the modal logic axiomatized, relative to K, by $\Box p \to p$) and $S4^* = \underline{MR} \cap \underline{M}^2 =$

 MR^2

If F=(W,R) is a Kripke frame (i.e., W is a non-empty set and R is a binary relation on W) then F^+ will be used to denote the modal algebra of all subsets of W, the modal operator $^\circ$ being defined by $A^\circ=\{w\in W|\forall v\in W[(w,v)\in R\Rightarrow v\in A]\}$. A modal algebra isomorphic to one of this kind is called a Kripke algebra. If \underline{K} is a class of modal algebras then \underline{K}_K denotes the subclass of its Kripke algebras. It is a simple matter to verify that for any modal formula φ and Kripke frame F we have $F\models\varphi$ iff $F^+\models\widehat{\varphi}=1$. In accordance with the usual terminology for modal logics we call a variety $\underline{K}\subseteq\underline{M}$ complete iff $\underline{K}=V(\underline{K}_K)$. Clearly, for any modal logic $L\in\Lambda(K)$, L is complete with respect to the Kripke semantics iff L^* is a complete variety.

DEFINITION. If $\underline{K} \in \Lambda(\underline{M})$, the degree of incompleteness of \underline{K} , denoted by $\delta(K)$ is

$$|\{\underline{K}' \in \Lambda(\underline{M})|\underline{K}'_K = \underline{K}_K\}|.$$

Thus for any $\underline{K} \in \Lambda(\underline{M})$, $1 \leq \delta(\underline{K}) \leq 2^{\aleph_0}$. The definition is nothing but an algebraic reformulation of the notion of degree of incompleteness of a modal logic, as introduced in [6] by K. Fine. He presented an example (as S. K. Thomason did in [9]) of a modal logic having degree of incompleteness ≥ 2 . We showed in [2] that every modal logic satisfying certain mild assumptions has degree of incompleteness 2^{\aleph_0} . We will now describe the behavior of the function δ in full detail.

For this we need the notion of splitting algebra, dealt with extensively in [4].

DEFINITION. Let $\underline{K} \subseteq \underline{M}$ be a variety. A finite subdirectly irreducible algebra $A \in \underline{K}$ is called a *splitting algebra* in \underline{K} if there exists a variety $\underline{K}_A \in \Lambda(\underline{K})$ such that for every $\underline{K}' \in \Lambda(\underline{K})$ either $A \in \underline{K}'$ or $\underline{K}' \subseteq \underline{K}_A$. If A is a splitting algebra then the variety \underline{K}_A is called a *splitting variety* and is denoted by \underline{K}/A .

It is easy to see that if a variety $\underline{K} \subseteq \underline{M}$ is generated by its finite members – i.e., if the corresponding modal logic has the finite model property – then every splitting of $\Lambda(\underline{K})$ is determined by some splitting algebra. Each splitting variety \underline{K}/A is definable, relative to \underline{K} , by a single equation $\varepsilon_A = 1$. In [4] we showed that in \underline{MR}^2 every finite subdirectly irreducible algebra os splitting in \underline{MR}^2 ; this result generalizes to the setting of \underline{M}^n ,

for any natural number n, as shown by W. Rautenberg [8]. Some examples in [3] showed that in MR not every finite subdirectly irreducible algebra is splitting.

THEOREM 1. The only splitting algebra in \underline{MR} is the two element modal algebra $\underline{2} = \{0,1\}$, with $0^{\circ} = 0$, $1^{\circ} = 1$.

THEOREM 2. An algebra $A \in \underline{M}$ is splitting in \underline{M} iff A is finite, subdirectly irreducible and satisfies $0^{0^n} = 1$ for some natural number n.

The smallest splitting algebra in \underline{M} is the two element modal algebra $\underline{2}^+ = \{0,1\}$, with $0^0 = 1^0 = 1$. The variety $\underline{M}/\underline{2}^+$ is defined by the equation $0^0 = 0$ and corresponds with the modal logic D axiomatized relative to K by $\Diamond T$. The variety $\underline{M}/\underline{2}^+$ is the smallest splitting variety, and apparently does not contain any algebras which are splitting in \underline{M} ; $\underline{2}$ is the only splitting algebra in $\underline{M}/\underline{2}^+$. Note also that through the class of splitting algebra is rather restricted, it generates \underline{M} .

LEMMA 3. Let $\underline{K} \subseteq \underline{M}$ be a variety satisfying the equation $0^{0^n} = 1$ for some natural number n. Then the finitely generated algebras in \underline{K} are finite; i.e., \underline{K} is locally finite.

Using this lemma we obtain:

THEOREM 4. Let $\{A_i|i\in I\}$ be a set of splitting algebras in \underline{M} . Then $\bigcap_{i\in I} \underline{M}/A_i$ is generated by its finite members.

It follows that varieties of this form are complete.

THEOREM 5. Let $\{A_i|i\in I\}$ be a set of splitting algebras. Then $\delta(\bigcap_{i\in I} \underline{M}/A_i)=1$.

PROOF. Let $\underline{K} = \bigcap_{i \in I} \underline{M}/A_i$, $\underline{K}' \in A(\underline{M})$ such that $\underline{K}_K = \underline{K}'_K$. Since \underline{K} is complete, $\underline{K}' \supseteq \underline{K}$. Since A_i is finite, $i \in I$, it is a Kripke algebra, hence $A_i \not\in \underline{K}'$, $i \in I$, thus $\underline{K}' \subseteq \bigcap_{i \in I} \underline{M}/A_i = \underline{K}$.

COROLLARY 6. There are 2^{\aleph_0} varieties of modal algebras having degree of incompleteness 1.

Apparently our conjecture in [1] and [2] that every modal logic which is a proper extension of K has degree of incompleteness 2^{\aleph_0} is false. We will now proceed to show, however, that the varieties mentioned in Theorem 5 are the only ones having degree of incompleteness $< 2^{\aleph_0}$.

A variety is called tabular if it is generated by a finite algebra. In [4] it was shown that in \underline{MR}^2 every tabular variety is covered by tabular varieties only, and only by finitely many.

THEOREM 7. In \underline{MR}^3 the variety V(2) is covered by 2^{\aleph_0} varieties.

In terms of modal logics this theorem clams that there are 2^{\aleph_0} modal logics containing the axioms $\Box p \to p$ and $\Box^2 p \to \Box^3 p$, which are immediate predecessors of classical logic, axiomatized by $\Box p \leftrightarrow p$. In particular, these logics need not be tabular. A variety is called *pretabular* if all its proper subvarieties are tabular. A well-known result, proved by several authors (see [7], [5]), states that MR^2 contains only five pretabular varieties.

COROLLARY 8. \underline{MR}^3 contains 2^{\aleph_0} pretabular varieties.

Note that this result and the previous one are is contradiction with the results claimed in [8], section 3.

Using the varieties produced in the proof of Theorem 7 we are able to prove: $\ \ \,$

THEOREM 9. Let $\underline{K} \in A(\underline{M})$ be a non-trivial variety and A a finite subdirectly irreducible algebra which is not splitting, such that $A \notin \underline{K}$ but such that all other homomorphic images of subalgebras of A do belong to \underline{K} . Then $\delta(\underline{K}) = 2^{\aleph_0}$ and \underline{K} has 2^{\aleph_0} covers in $\Lambda(\underline{M})$.

Using Theorem 9 and Theorem 5 we infer:

COROLLARY 10. If $\underline{K} \in A(\underline{M})$ is such that \underline{K} is not an intersection of splitting varieties, then $\delta(K) = 2^{\aleph_0}$.

Thus, if $\underline{K} \in \Lambda(\underline{M})$, then $\delta(\underline{K}) = 1$ if \underline{K} is an intersection of splitting varieties, otherwise $\delta(\underline{K}) = 2^{\aleph_0}$. The proofs of theorems provide somewhat sharper results. In order to formulate them the following definition is useful.

Definition. For $\underline{K} \in \Lambda(\underline{M})$, $\underline{K}' \in \Lambda(\underline{K})$ let

$$\delta_K(\underline{K}') = |\{\underline{K}'' \in \Lambda(\underline{K})|K_K'' = \underline{K}_K'\}|.$$

It follows from the constructions that

Corollary 11.

- (i) $\delta_{\underline{M}/2^+}(\underline{K}) = 2^{\aleph_0}$, for every $\underline{K} \in \Lambda(\underline{M}/\underline{2}^+)$, such that \underline{K} is nontrivial and $\underline{K} \neq \underline{M}/\underline{2}^+$.
- (ii) $\delta_{\underline{MR}}(K) = 2^{\aleph_0}$, for every $\underline{K} \in \Lambda(MR)$ such that \underline{K} is nontrivial and $\underline{K} \neq \underline{MR}$.

Hence, every proper extension of the modal logic T has degree of incompleteness (relative to T) 2^{\aleph_0} . Since in \underline{M}^n , n a natural number, every finite subdirectly irreducible algebra is splitting, and hence the \underline{M}^n contain many varieties which are intersections of splitting varieties, the function $\delta_{\underline{M}^n}$ assumes the value 1 very often. Much more we do not know about the $\delta_{\underline{M}^n}$, $n \geq 3$. For example, if $\underline{K} \in \Lambda(\underline{M}\underline{R}^n)$ is non-trivial and tabular, what is $\delta_{MR^n}(\underline{K})$, $n \geq 3$?

A bit more can be said in case n=2. Indeed, $\delta_{\underline{MR}^2}(\underline{K})=1$, for every tabular variety \underline{K} , and more generally, for every variety $\underline{K}\subseteq \underline{MR}^2/F_n^+$, where $F_n=(\{0,1,\ldots,n-1\},\leq)$. However, as Fine's example shows [6], there exists a $\underline{K}\in\Lambda(\underline{MR}^2)$ such that $\delta_{\underline{MR}^2}(\underline{K})\geq 2$.

As a byproduct we obtain interesting results on the covering relation in $\Lambda(\underline{M})$.

Definition. If $\underline{K} \in \Lambda(\underline{M})$, $\underline{K}' \subseteq \Lambda(\underline{K})$, let $c_{\underline{K}}(\underline{K}') = |\{\underline{K}'' \in \Lambda(\underline{K}) | \underline{K}'' \text{ covers } \underline{K}'\}|$. We write c(K) for $c_{\underline{M}}(\underline{K})$.

If $\underline{K} \in \Lambda(\underline{M})$ and $\underline{K}' \in \Lambda(\underline{K})$, $K' \neq \underline{K}$, are such that \underline{K} is generated by its finite members or \underline{K}' is finitely axiomatizable then $c_{\underline{K}}(\underline{K}') \geq 1$. In [3] we gave examples of varieties $\underline{K}, \underline{K}'$ such that $\underline{K}' \subsetneq \underline{K}$ and $c_{\underline{K}}(\underline{K}') = 0$.

THEOREM 13.

- (i) Suppose $\underline{K} \in \Lambda(\underline{M})$, $\underline{K} \neq \underline{M}$, is an intersection of splitting varieties. If \underline{m} is the smallest cardinal number such that $\underline{K} = \bigcap_{i \in I} \underline{M}/A_i$, $|I| = \underline{m}$, for a set of splitting varieties $\{\underline{M}/A_i|i \in I\}$, then $c(\underline{K}) = \underline{m}$. Hence $1 \leq m \leq \aleph_0$ in this case.
- (ii) If not, then $c(\underline{K}) = 2^{\aleph_0}$ if \underline{K} is non-trivial; $c(\underline{K}) = 2$ if \underline{K} is trivial.

THEOREM 14.

(i) For every $\underline{K} \in \Lambda(\underline{M}/2^+)$, \underline{K} nontrivial and $\underline{K} \neq \underline{M}/2^+$, $c_{\underline{M}/2^+}(\underline{K}) = 2^{\aleph_0}$.

(ii) For every $\underline{K} \in \Lambda(\underline{MR})$, \underline{K} nontrivial, $\underline{K} \neq \underline{MR}$, $c_{MR}(K) = 2^{\aleph_0}$.

Corollary 15. For $K \in \Lambda(\underline{M})$, K non-trivial, $K \neq \underline{M}$

$$\delta(K) = 1$$
 iff $c(K) \leq \aleph_0$

and

$$\delta(\underline{K}) = 2^{\aleph_0} \text{ iff } c(\underline{K}) = 2^{\aleph_0}.$$

References

- [1] W. J. Blok, The lattice of modal logics, **B.S.L.** 6 (1977), pp. 112–115.
- [2] W. J. Blok, **The lattice of modal logics, an algebraic investigation**, Rep. 77–15, University of Amsterdam.
- [3] W. J. Blok, **The lattice of varieties of modal algebras is not strongly atomic**, Rep. 77–16, University of Amsterdam.
- [4] W. J. Blok, **Varieties of interior algebras**, dissertation, 1976, University of Amsterdam.
- [5] L. Esakia and V. Meshi, Five critical modal systems, **Theoria** 43 (1977), pp. 52–60.
- [6] K. Fine, An incomplete logic containing S4, **Theoria** 40 (1974), pp. 23–29.
- [7] L. L. Maximova, *Pretabular extensions of Lewis S4*, **Algebra i Logika** 14/1, pp. 28–55.
- [8] W. Rautenberg, The lattice of normal logics, **B.S.L.** 6 (1977), pp. 193–201.
- [9] S. K. Thomason, An incompleteness theorem in modal logic, **Theoria** 40 (1974), pp. 30–34.

Mathematisch Institut Roetersstraat 15 Amsterdam The Netherlands